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Abstract

The main aim of this article is to present a graphical approach to robust stability analysis for

families of fractional order (quasi-)polynomials with complicated uncertainty structure. More

specifically, the work emphasizes the multilinear, polynomial and general structures of

uncertainty and, moreover, the retarded quasi-polynomials with parametric uncertainty are

studied. Since the families with these complex uncertainty structures suffer from the lack of

analytical tools, their robust stability is investigated by numerical calculation and depiction of

the value sets and subsequent application of the zero exclusion condition.

1. Introduction

Fractional order control represents promising and attractive research topic, which has been

widely studied recently. In fact, the field of fractional order calculus itself is not new [1]–[4],

but the true boom of scientific works has exploded in various application areas over the last

few years [5], [6]. The applications of fractional order calculus can be found, among others, in

physics [7], [8], bioengineering [9]–[12], viscoelastic materials [13], [14] and also [12], chaotic

systems [15]–[18], electronic circuits and fractance devices [19], [20], ultracapacitors [21],

robotics [22]–[25], signal processing [26], [27], and many other areas. Certainly, the field of

automatic control is no exception to this trend, quite the opposite [28]–[31]. On the other

hand, the robustness of control systems can already be seen as one of the classical (and funda-

mental) problems in control engineering theory [32]–[36] and practice [37]. Naturally, the

combination of robust and fractional order control is nowadays really appealing research disci-

pline both for linear [38]–[61] and nonlinear [62]–[64] systems.

In control theory, a common way for the incorporation of uncertainty into mathematical

model consists in the utilization of the parametric uncertainty. The systems with parametric

uncertainty are supposed to have known and fixed structure (i.e. order), but some of their

usually real parameters can vary (“slowly” in time) within assumed intervals. The typical

problem related to the systems under parametric uncertainty is to investigate if such systems
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are stable (or such plants are stabilized) for all possible combinations of uncertain parame-

ters, that is if the systems are robustly stable (or the plants are robustly stabilized). An array

of methods was developed for robust stability analysis of integer order systems with paramet-

ric uncertainty [33], [34]. The selection of suitable tool depends mainly on the uncertainty

structure (i.e. on relations among uncertain coefficients and complexity of used functions).

Generally, the more complex uncertainty structures require more complex analysis methods.

However, the value set concept combined with the zero exclusion condition [33] represents a

universal graphical tool which is applicable also for the most complicated uncertainty struc-

tures [65]–[67].

As mentioned above, the robust and fractional order control has been widely combined

by many researchers nowadays and thus a number of works on the issue of robust stability

analysis of fractional order system have appeared lately. The robust stability test procedure

for fractional order linear time-invariant (FO-LTI) systems of commensurate orders with

interval uncertainty was firstly proposed in [38]. The extension to the case of systems with

also interval fractional orders was discussed in [39]. Then, the robust stability problem for

the general type of interval FO-LTI systems of noncommensurate orders was opened in [40].

The state-space form of the interval FO-LTI systems was considered and their robust stability

tested for the first time in [41] by means of the matrix perturbation theory. The alternative

approach based on the Lyapunov inequality was subsequently presented in [42]. The defi-

ciency of the last two above-mentioned results (and also of many other works that followed)

can be seen their conservativeness as the conditions are only sufficient ones. The necessary

and sufficient condition for the interval FO-LTI systems was derived e.g. in [43] by using a

complex Lyapunov inequality or in [44] in terms of linear matrix inequalities. However, both

these works considered only the case of fractional order α 2 [1, 2) and thus some further

papers were focused on the α 2 (0, 1) case–see e.g. [45]. Then, the robust stability of FO-LTI

interval systems with linear coupling relationships among the fractional order and other

model parameters were studied for the cases of α 2 [1, 2) and α 2 (0, 1) in [46] and [47],

respectively. The robust stability and stabilization of FO-LTI systems with polytopic uncer-

tainty was considered e.g. in [48]. However, the systems with more complicated uncertainty

structures suffer from the lack of, especially analytical, tools. An exceptionally universal

method is represented by the combination of the value set concept and the zero exclusion

condition. Its classical integer order version [33] was extended to the fractional order cases

e.g. in [49]–[53].

This article presents a graphical approach to the robust stability analysis of families of frac-

tional order polynomials (which can be considered as characteristic polynomials of investi-

gated fractional order systems) with a particular emphasis on families of polynomials with

complicated uncertainty structure based on plotting the numerically obtained value sets and

utilization of the zero exclusion condition. This work is intended to accompany the contribu-

tion [51] and to put a stress on complex uncertainty structures such as multilinear, polynomial,

and general, or even on the uncertain quasi-polynomials arising from the application of time-

delay models.

The article is organized as follows. In Section 2, the fractional order polynomials with

parametric uncertainty are defined. The Section 3 describes various structures of uncertainty

and outlines the typical tools for their robust stability analysis. The graphical approach to

robust stability investigation based on the value set concept and the zero exclusion condition is

presented in Section 4. Further, Section 5 shows the practical applicability of the method by

means of four illustrative examples with various complicated uncertainty structures. And

finally, Section 6 offers some conclusion remarks.

Robust stability of fractional order polynomials with complicated uncertainty structure
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2. Fractional order polynomials with parametric uncertainty

General continuous integro-differential operator (differintegral) is defined as [5], [28], [30]:

aDa

t ¼

da

dta
Re a > 0

1 Re a ¼ 0

ðt

a

ðdtÞ
� a Re a < 0

8
>>>>>>><

>>>>>>>:

ð1Þ

where α is the order of the differintegration (typically α 2 R) and a and t are the limits of the

operation. The differintegral can be defined in various ways. The three most common are Rie-

mann-Liouville, Grünwald-Letnikov and Caputo definitions.

The Laplace transform of the differintegral which is defined in the Riemann-Liouville way

is given by [3], [28], [30]:

Lf0Da

t f ðtÞg ¼
ð1

0

e� st
0Da

t f ðtÞdt ¼ saFðsÞ �
Xn� 1

m¼0

sm
aDa� m� 1

t f ðtÞjt¼0
ð2Þ

where integer n lies within (n– 1< α� n). Under the assumption of zero initial conditions,

the Laplace transform is simply [30]:

Lf0Da

t f ðtÞg ¼ saFðsÞ ð3Þ

which holds true for all three mentioned differintegral definitions.

The fractional order polynomial with parametric uncertainty has the form:

pðs; qÞ ¼ rnðqÞs
an þ rn� 1ðqÞs

an� 1 þ � � � þ r1ðqÞs
a1 þ r0ðqÞs

a0 ð4Þ

where q is the vector of uncertainty, αn > αn−1 > � � �> α1 > α0 are real numbers and ρi for

i = 0,. . .,n are coefficient functions.

The family of fractional order polynomials is then [33]:

P ¼ fpð�; qÞ : q 2 Qg ð5Þ

where Q is the uncertainty bounding set (commonly considered as a multidimensional box,

i.e. individual components of vector q are bounded by intervals).

3. Structures of uncertainty

A level of complicatedness of the relations among coefficients of the polynomial Eq (4) (in

other words the complexity of the coefficient functions ρi and their interconnections) is a cru-

cial factor for the decision on a suitable tool for robust stability analysis both for integer and

fractional order systems with parametric uncertainty. According to this, one can distinguish

among several kinds of uncertainty structures. Standard classification for integer order systems

is [33], [65], [66]:

• Independent uncertainty structure (called interval one for Q in the shape of a box)

• Affine linear uncertainty structure (called polytopic one for Q in the shape of a polytope)

• Multilinear uncertainty structure

• Polynomial (polynomic) uncertainty structure

Robust stability of fractional order polynomials with complicated uncertainty structure
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• General uncertainty structure

On top of that, so-called single parameter uncertainty is a special case, which can be seen

as the simplest one despite the structure itself can be formally affine linear or even more

complicated.

In the interval uncertainty, each uncertain parameter may enter into the one and only coef-

ficient (although theoretically more uncertain parameters can enter into the same coefficient).

This results in the mutual independence of all coefficients and possible utilization of the

famous Kharitonov theorem. However, this holds true only for integer order version of inter-

val polynomials. The case of fractional order interval polynomials is a bit more complicated

since the real and imaginary parts can be mutually dependent and thus, the classical Kharito-

nov theorem is not directly applicable anymore (see e.g. [49]).

The affine linear uncertainty structure means that more uncertain parameters can enter

into the same coefficient, but these coefficients must have the form of affine linear functions,

i.e.:

riðqÞ ¼ ðakqk þ ak� 1qk� 1 þ � � � þ a1q1 þ a0Þ ð6Þ

where k is the dimension of the uncertainty vector q and am are constants for m = 0,. . .,k. The

affine linear uncertainty structure appears very commonly in robust control practice because a

simple interval controlled plant in feedback connection with a fixed controller generally leads

to a closed-loop characteristic polynomial with affine linear uncertainty structure. A number

of tools for investigation or robust stability for this structure can be found in the integer order

robust control literature (e.g. the edge theorem, the 32 edge theorem (or similar generalized

Kharitonov theorem) and more specialized 16 plant theorem). Robust stability of fractional

order systems with affine linear uncertainty structure has been studied e.g. in [48].

The next and more complex level of relations among polynomial coefficients is represented

by the multilinear uncertainty structure. It means that if all but one uncertain parameters are

fixed, then ρi is affine linear in the remaining (non-fixed) parameter. Practically speaking, the

coefficients can contain the product of uncertain parameters. The robust stability analysis for

this uncertainty structure can already be quite a complicated task because the value sets are

non-convex and tools based on extreme points or edges are not valid anymore. Well-known

result for integer order polynomials with multilinear uncertainty structure is the mapping the-

orem, which works with the convex hull of the original family. Consequently, the analysis is

easier but the cost is the sufficiency of the obtained results. A possible technique for investiga-

tion of fractional order polynomials with multilinear uncertainty structure can be found e.g. in

[52].

The family with polynomial (polynomic) uncertainty structure contains the coefficient

functions ρi with multivariable polynomials in uncertain parameters. The robust stability anal-

ysis is even more complicated because the value sets are not only non-convex but moreover,

they can protrude from the convex hulls of the extremes. The polynomial uncertainty structure

can be formally transformed into the multilinear one with different uncertainty bounding set

but it is not very useful from the analysis point of view.

Finally, in general uncertainty structures the coefficients ρi can be arbitrary multivariable

functions of components of q provided that ρi are continuous functions on assumed intervals.

Practically no analytical tools are available for robust stability investigation in this general case.

Besides all the mentioned uncertainty structures the special type of retarded quasi-polyno-

mial is a frequent object of interest from the control theory viewpoint. Assume (integer or

Robust stability of fractional order polynomials with complicated uncertainty structure
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fractional order) controlled time-delay plant:

Gðs; q;YÞ ¼
bðs; qÞ
aðs; qÞ

e� YðqÞs ð7Þ

where not only numerator b(s,q) and denominator a(s,q) polynomials are uncertain, but also

the time-delay term Θ(q) can vary within supposed bounds (formally it could be included in

the same vector of uncertainty q). Then suppose the plant Eq (7) is in the classical feedback

connection with (integer or fractional order) controller:

CðsÞ ¼
cNðsÞ
cDðsÞ

ð8Þ

The corresponding uncertain (integer or fractional order) closed-loop characteristic retarded

quasi-polynomial is:

pCLðs; q;YÞ ¼ aðs; qÞcDðsÞ þ bðs; qÞe� YscNðsÞ ð9Þ

Simple graphical analysis of robust stability for this kind of fractional order quasi-polynomial

is shown in [58].

4. Value sets and zero exclusion condition

As mentioned above, the complicated structures of uncertainty suffer from the lack of suitable

techniques for robust stability analysis. However, a graphical method based on the combina-

tion of the value set concept and the zero exclusion condition [33] represents a universal tool,

which can be applied to a wide range of uncertainty structures, including the most complex

ones. Besides this, it can be used also for various regions of stability (robust D-stability). More

details on parametric uncertainty, related robust stability analysis and several examples of the

typical value sets for the integer order systems can be found in [33] and subsequently e.g. in

[65], [66]. The works [49]–[53] extended the concept of the value set to fractional order uncer-

tain polynomials (or quasi-polynomials [58]).

The value set for the family of polynomials Eq (5) at the frequency ω 2 R is defined as [33]:

pðjo;QÞ ¼ fpðjo; qÞ : q 2 Qg ð10Þ

which means that p(jω, Q) is the image of Q under p(jω,�). In practice, the value sets can be

constructed by substituting s for jω, fixing ω and letting the vector of uncertain parameters q
range over the set Q.

The zero exclusion condition for (Hurwitz) stability of the family of continuous-time poly-

nomials Eq (5) can be formulated [33]: Consider the invariant degree of polynomials in the

family, pathwise connected uncertainty bounding set Q, continuous coefficient functions ρk(q)

for k = 0, 1, 2,. . ., n and at least one stable member p(s, q0). Then the family P is robustly

stable if and only if the origin of the complex plane (zero point) is excluded from the value set

p(jω, Q) at all frequencies ω� 0, i.e. P is robustly stable if and only if:

0 =2 pðjo;QÞ 8o � 0 ð11Þ

Note that this universal approach is directly applicable also for the families of retarded

quasi-polynomials with the structure Eq (9) [33], [58], [65], [68].

In this work, the value sets for the fractional order families with complicated uncertainty

structures are plotted by using a suitable sampling (gridding) of the uncertain parameters

and direct calculation of related partial points of the value sets for a supposed frequency

range. It means that the practical plotting of the Figs 1–4 from the next Section 5 and

Robust stability of fractional order polynomials with complicated uncertainty structure
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evaluation of the robust stability tests were performed as follows. A suitable set of non-nega-

tive frequencies was pre-selected and then the value set for each individual frequency was

depicted. All those individual value sets are composed of the points corresponding to the

images of all variations of the appropriately sampled uncertain parameters. When the suit-

able value sets were obtained, their position in relation to the origin of the complex plane

had to be checked. As defined above, the family of (quasi-)polynomials is robustly stable if

and only if the complex plane origin (zero point) is excluded from the value sets and all

other required assumptions are fulfilled, especially the existence of at least one stable mem-

ber of the family. This existence could be actually verified before the graphical analysis and

if a chosen member is found unstable, the graphical test itself can be skipped because the

whole family is robustly unstable. This technique is relatively easy-to-use, it leads to the

robust stability results with the necessary and sufficient condition, and it is applicable even

for the systems with very complicated uncertainty structures, which represents its main

advantage. On the other hand, a long computational time for a high number of uncertain

parameters is the weakness.

Fig 1. Value sets of the family of fractional order polynomials with multilinear uncertainty structure Eq (12).

https://doi.org/10.1371/journal.pone.0180274.g001
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5. Illustrative examples

In order to show the practical applicability of the graphical approach to robust stability analysis

discussed hereinbefore, four illustrative examples with families of fractional order (quasi-)

polynomials are presented in this Section. The first three examples deal with multilinear, poly-

nomial and general uncertainty structure, successively, and the last one focuses on a family of

retarded quasi-polynomials.

5.1 Multilinear uncertainty structure

First, assume the family of fractional order polynomials with multilinear uncertainty structure:

pMULðs; qÞ ¼ s4:1 þ ðq1q2 þ 3Þs3:2 þ ðq1 þ q2 þ 6Þs1:9 þ ð2q1q2 þ 5q1 þ q2 þ 2Þs0:8 þ 0:5q1q2 þ 1 ð12Þ

where both q1 2 [0,1] and q2 2 [0,1].

The value sets depicted for the frequency range from 0 to 2.1 [rad/s] with the step 0.03 by

means of sampling the uncertain parameters (with the step 0.02) are shown in Fig 1. In accor-

dance with the process described in the previous Section, the family Eq (12) is robustly stable

Fig 2. Value sets of the family of fractional order polynomials with polynomial uncertainty structure Eq (13).

https://doi.org/10.1371/journal.pone.0180274.g002
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because it contains a stable member and the origin of the complex plane (zero point) is

excluded from the plotted value sets.

5.2 Polynomial uncertainty structure

In the second example, consider the family of fractional order polynomials with polynomial

(polynomic) uncertainty structure:

pPOLðs; qÞ ¼ s4:2 þ ðq3

1
þ q3

2
þ 2Þs3:3 þ ð3q5

1
q2

2
þ q1q2 þ 5Þs1:8 þ ðq2

1
q2 þ q1q2

2
þ 1Þs0:9 þ q1q2 þ 2 ð13Þ

where again q1 2 [0,1], q2 2 [0,1].

The value sets are now plotted for the frequency range 0:0.05:1.8 [rad/s] and both uncertain

parameters are sampled with the step 0.01 –see Fig 2. Obviously, the family Eq (13) is not

robustly stable because the complex plane origin is included in the value sets.

Fig 3. Value sets of the family of fractional order polynomials with general uncertainty structure Eq (14).

https://doi.org/10.1371/journal.pone.0180274.g003
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5.3 General uncertainty structure

The third example deals with the family of fractional order polynomials with completely gen-

eral uncertainty structure:

pGENðs; qÞ ¼ s3:2 þ ðcosðq1q2Þ þ 2Þs2:1 þ ð5
ffiffiffiffiffiffiffi
jq1j

p
� 3sinðq2Þ � cosðq1q2Þ þ 3Þs0:9 þ � � �

þð�
ffiffiffiffiffiffiffi
jq1j

p
þ sinðq2Þ þ cosðq1q2Þ þ 2Þ

ð14Þ

where q1 2 [−1,1], q2 2 [−1,1].

The use of the frequency range 0:0.1:3 [rad/s] and sampling the uncertain parameters with

the step 0.02 lead to the value sets which are shown in Fig 3. Similarly as in the previous case,

the family Eq (14) is robustly unstable due to the inclusion of the zero point in the value sets.

5.4 Uncertain quasi-polynomials

The aim of the last example is to decide on the robust (in)stability of the family of retarded

quasi-polynomials. In [69], the fractional order PI controller:

CðsÞ ¼ 4:0494þ
7:6646

s1:45
¼

4:0494s1:45 þ 7:6646

s1:45
ð15Þ

Fig 4. Value sets of the family of fractional order retarded quasi-polynomials Eq (18).

https://doi.org/10.1371/journal.pone.0180274.g004
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was designed for the first order plus time delay plant:

G0ðsÞ ¼
K0

T0sþ 1
e� Y0s ¼

1

sþ 1
e� 0:1s ð16Þ

For the purpose of this article, a potential change of ±20% in the gain, time constant, and time-

delay term is supposed, i.e.:

Gðs;K;T;YÞ ¼
K

Ts þ 1
e� Ys ¼

½0:8; 1:2�

½0:8; 1:2�sþ 1
e� ½0:08;0:12�s ð17Þ

According to Eq (9), the corresponding family of fractional order closed-loop characteristic

retarded quasi-polynomials is:

pCLðs;K;T;YÞ ¼ ðTs þ 1Þs1:45 þ Ke� Ysð4:0494s1:45 þ 7:6646Þ ð18Þ

where K 2 [0.8,1.2], T 2 [0.8,1.2] and Θ 2 [0.08,0.12].

The value sets are depicted for the frequency range ω = 0:0.1:7 [rad/s] and for the sampled

gain K = 0.8:0.02:1.2, time constant T = 0.8:0.02:1.2, and time delay term Θ = 0.08:0.002:0.12.

The result can be seen in Fig 4 which clearly demonstrates that the family Eq (18) is robustly

stable (the zero point is excluded and the family contains a stable member).

6. Conclusion

This article was focused on a graphical approach to robust stability investigation for families of

fractional order polynomials or even quasi-polynomials with complicated uncertainty struc-

ture. The four illustrative examples demonstrated the application of the values set concept and

the zero exclusion condition for the families of fractional order polynomials with multilinear

uncertainty structure, polynomial uncertainty structure, general uncertainty structure, and for

the family of the fractional order retarded quasi-polynomials. The obtained results showed the

effectivity of the method for robust stability analysis of fractional order polynomials with vari-

ous complex uncertainty structures. The potential directions for future research can be seen in

robust stability analysis of e.g. fractional order anisochronic systems with internal delays and

uncertain parameters [67], fractional order systems with spherical uncertainty [70] or frac-

tional order systems with complicated uncertainty structures combined with the uncertain

fractional orders.
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42. Ahn H-S, Chen YQ, Podlubný I. Robust stability test of a class of linear time-invariant interval fractional-

order system using Lyapunov inequality. Applied Mathematics and Computation. 2007; 187(1): 27–34.

43. Ahn H-S, Chen YQ. Necessary and sufficient stability condition of fractional-order interval linear sys-

tems. Automatica. 2008; 44(11): 2985–2988.

44. Lu J-G, Chen G. Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI

Approach. IEEE Transactions on Automatic Control. 2009; 54(6): 1294–1299.

45. Lu J-G, Chen YQ. Robust Stability and Stabilization of Fractional-Order Interval Systems with the Frac-

tional Order α: The 0 < α <1 Case. IEEE Transactions on Automatic Control. 2010; 55(1): 152–158.

46. Liao Z, Peng C, Li W, Wang Y. Robust stability analysis for a class of fractional order systems with

uncertain parameters. Journal of The Franklin Institute. 2011; 348(6): 1101–1113.

47. Li C, Wang J. Robust stability and stabilization of fractional order interval systems with coupling relation-

ships: The 0 < α <1 case. Journal of The Franklin Institute. 2012; 349(7): 2406–2419.

48. Lu J-G, Chen YQ. Stability and stabilization of fractional-order linear systems with convex polytopic

uncertainties. Fractional Calculus & Applied Analysis. 2013; 16(1): 142–157.
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