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Abstract: Polypyrrole (PPy) in globular form and as nanotubes were prepared by the oxidation of
pyrrole with iron(III) chloride in the absence and presence of methyl orange, respectively. They were
subsequently converted to nitrogen-containing carbons at 650 ◦C in an inert atmosphere. The course
of carbonization was followed by thermogravimetric analysis and the accompanying changes in
molecular structure by Fourier Transform Infrared and Raman spectroscopies. Both the original
and carbonized materials have been tested in sensing of polar and non-polar organic vapors.
The resistivity of sensing element using globular PPy was too high and only nanotubular PPy
could be used. The sensitivity of the PPy nanotubes to ethanol vapors was nearly on the same
level as that of their carbonized analogs (i.e., ~18% and 24%, respectively). Surprisingly, there was
a high sensitivity of PPy nanotubes to the n-heptane vapors (~110%), while that of their carbonized
analog remained at ~20%. The recovery process was significantly faster for carbonized PPy nanotubes
(in order of seconds) compared with 10 s of seconds for original nanotubes, respectively, due to higher
specific surface area after carbonization.

Keywords: polypyrrole nanotube; carbon nanotube; carbonization; functionalized nanotube;
heptane detection

1. Introduction

Since carbon nanotubes (CNTs) appeared to be very attractive for volatile organic compounds
detection, many research groups focused on the development of the various sensors [1–7]. It was
observed that especially defects and/or impurities, such as heteroatoms, present in nanotubes are
responsible for their detection ability, since they modify generally low chemical interaction of CNTs
with gas or vapor analytes [2,8]. The neat CNTs are able to detect only molecules with electron-donating
(e.g., NH3) or electron-accepting (e.g., NO2) properties, but, in general, for the detection of such weakly
absorbed molecules on the surface their change of the resistance (i.e., sensitivity) is small [9]. On the
contrary, the functionalized nanotubes exhibit higher molecular reactivity, therefore the development of
new carbonaceous materials with controlled morphology is a promising research direction in sensing
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applications [10–14]. Polypyrrole (PPy) is also known to be a promising material for gas sensors
detecting vapors of organic solvents [15]. Another interesting aspect is represented by the possibility
to study properties of PPy-based sensors by impedance spectroscopy [16].

Conducting polymers, such as PPy [17–19], have been shown to produce nitrogen-containing
carbons when exposed to temperature above 600 ◦C in an inert atmosphere. It is important to
stress that the morphology is retained during this process but the specific surface area is likely
to increase. An extensive review concerning the carbonization of these two polymers has recently been
published [20].

Polypyrrole is usually prepared by the oxidation of pyrrole with iron(III) salts [21,22] or
ammonium peroxydisulfate [23]. Polypyrrole typically has a globular morphology [21]. When prepared
in the presence of so-called structure-guiding agents, such as methyl orange, PPy is obtained
as nanotubes [19,24–29]. It is of interest if the difference in nano-scale morphology, globular or
nanotubular, would be reflected in sensing applications.

In present study, globular and nanotubular PPy has been prepared and subsequently converted
to nitrogen-containing CNTs by exposure to elevated temperature in an inert atmosphere. The vapor
response of both the original and carbonized PPy was investigated for two organic solvents,
polar ethanol and non-polar n-heptane, by using evaluation of resistance changes.

2. Materials and Methods

2.1. Preparation

Globular PPy was prepared by chemical polymerization of pyrrole monomer with iron(III)
chloride hexahydrate at equimolar ratio in water. Molar concentrations of both reactants were 422 mM,
total volume of reaction mixture was 379 mL. The stirred reaction mixture was kept at 5 ◦C for 24 h.
The precipitated PPy was separated by filtration, rinsed with water and acetone, and dried at 40 ◦C
in vacuo.

Polypyrrole nanotubes were synthesized in similar manner in the presence of structure-guiding
additive, methyl orange, and sodium 4-[4-(dimethylamino)phenylazo]-benzenesulfonate. 200 mL of
2.5 mM solution of methyl orange in distilled water and 700 µL of pyrrole were mixed. Then solution
of 10 mmol iron(III) chloride hexahydrate dissolved in 23 mL distilled water was added drop-wise
during two hours. Both solutions were cooled to 5 ◦C before mixing and kept at this temperature
afterwards. Molar concentrations of reactants thus were 45 mM pyrrole, 45 mM iron(III) chloride
hexahydrate, and 2.2 mM methyl orange. After 24 h, precipitated PPy nanotubes were isolated by
filtration, and purified by Soxhlet extraction using acetone until the extract was colorless. Polypyrrole
nanotubes were dried as above. Both samples were converted to PPy bases [30] by overnight immersion
in excess of 1 M ammonium hydroxide, rinsed with acetone, and dried.

2.2. Carbonization of Polypyrrole

Thermogravimetric analysis was used at first as an analytical tool of PPy carbonization.
This was performed in 50 cm3·min−1 nitrogen flow at a heating rate of 10 ◦C·min−1 with a TGA 7
Thermogravimetric Analyzer (Perkin Elmer, Waltham, MA, USA). A comparative experiment in air
has also been done.

In a preparative carbonization, 5 g of PPy nanotubes or globular PPy bases were heated in an inert
nitrogen atmosphere to 650 ◦C in an electric oven. The selection of this particular temperature was
made according previous experiments on polyaniline and PPy. In case of polyaniline it follows from
the evolution of the infrared and Raman spectra that after carbonization at 650 ◦C, the G and D bands
characteristic of a carbon material are well developed and the residue of the sample is close to 60 wt %.
It has been proven also for nanotubular PPy derived carbon nanotubes [20]. When the carbonization
temperature was lower, the carbonization was not complete. At higher temperatures, the yield of
carbonized product is substantially reduced.
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The heating was switched on, and the temperature increased at 10 ◦C·min−1 rate. After the target
temperature was reached, the heating was switched off, and the residue was left to cool down in the
flowing nitrogen stream.

2.3. Characterization

Infrared spectra in the range of 400–4000 cm−1 were recorded at 64 scans per spectrum at 2 cm−1

resolution using a fully computerized NEXUS 870 FTIR Spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) with DTGS TEC detector (Thermo Fisher Scientific). Samples were dispersed in
potassium bromide and compressed into pellets. Raman spectra excited with a diode 785 nm laser
were collected on a Renishaw inVia Reflex Raman spectroscope. A research-grade Leica DM LM
microscope (Leica Microsystems, Wetzlar, Germany) with an objective magnification 50× was used to
focus the laser beam. The scattered light was analyzed by the spectrograph with a holographic grating
1200 lines mm−1. A Peltier-effect cooled CCD detector (576 × 384 pixels) registered the dispersed
light. To avoid degradation of the samples by the laser beam, a reduced beam power was always
used. Transmission electron microscope (TEM) JEOL JEM 2000 FX (JEOL, Tokyo, Japan) and scanning
electron microscope (SEM) JEOL 6400 (JEOL, Tokyo, Japan) were used to assess the morphology.
Specific surface area was determined by nitrogen adsorption using a Gemini VII 2390 Analyzer
(Micrometrics Instruments Inc., Norcross, GA, USA).

Room temperature conductivity of PPy nanotubes was determined on pellets compressed at
700 MPa by a four-point method in the van der Pauw arrangement using a Keithley 220 Programmable
Current Source, a Keithley 2010 Multimeter (Keithley Instruments, Solon, OH, USA) as a voltmeter
and a Keithley 705 Scanner (Keithley Instruments) equipped with a Keithley 7052 Matrix Card
(Keithley Instruments). The conductivity of globular PPy and carbonized PPy was estimated on
powders placed between two conducting pistons by two-probe method with applied pressure of
ca. 23 kPa and using a Keithley 6517 electrometer (Keithley Instruments).

2.4. Vapor Response

Polypyrrole nanotubes, both original and carbonized form, were dispersed in 50 mL of deionized
water containing 0.1 M of sodium dodecyl sulfate (SDS) surfactant (Sigma Aldrich, St. Louis, MO,
USA) and 0.14 M of 1-pentanol (Sigma Aldrich), respectively. The concentration of nanotubes in the
suspension was 0.3 wt %. The suspension was homogenized in an ultrasonic apparatus (UZ Sonopuls
HD 2070, Bandelin, Germany) for 5 min at ca. 50 ◦C. Polypyrrole nanotube networks were prepared
by vacuum filtration of suspension thought nonwoven polyurethane membrane, composed of
polyurethane straight fibers with average diameter 0.14 ± 0.09 µm. The fibers’ surface was smooth
and the main pore size was around 0.2 µm. Thus, prepared network on polyurethane support was
rinsed several times with deionized water and methanol. After drying, this composite structure was
tested as a layer sensitive to volatile organic compounds when exposed to the vapors of n-heptane
and ethanol (having nearly the same vapor pressure at room temperature but with different polarity).
For sensitivity testing, laboratory air was used as the reference gas. Aqueous suspensions of globular
PPy in 0.4 wt % concentration were similarly prepared and processed.

The stripes 5 × 20 mm2 made of active components deposited on polyurethane supports were
placed on a planar holder with copper electrodes fixed on both sides of the stripe by a screw
mechanism. Time-dependent electrical resistance was measured along the specimen length by the
two-point technique using a multimeter Keithley 6517B (Keithley Instruments) during adsorption
(analyte-on phase) and desorption (analyte-off phase). The holder with the specimen was transferred
into an air-tight conical flask containing saturated vapors of the respective solvent at atmospheric
pressure and 25 ◦C. Under these conditions, the saturated vapor of ethanol has a concentration of
7.7 vol % and the corresponding value for n-heptane is 6.0 vol %. After 6 min of measurement the
holder was removed from the flask and, for the next 6 min, the sample resistance was measured in
laboratory air in the desorption mode until steady state. The sensitivity of sensors, a relative change in
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resistivity is defined as S [%] = (Rg − Ra)/Ra × 100, where Ra is the resistance in air under laboratory
conditions and Rg is the resistance of the specimen exposed to organic vapor.

3. Results and Discussion

The classical preparation of PPy yields a product with globular morphology [21] (Figure 1a left).
Its carbonization proved that the morphology is retained when this process is carried out in an inert
atmosphere (Figure 1a right). The introduction of methyl orange to the reaction mixture results in
a dramatic change in polymer morphology, and PPy nanotubes are obtained instead (Figure 1b left).
The cavity inside the nanotubes is demonstrated by using transmission electron microscopy (Figure 2).
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The nanotubular structure is damaged but not destroyed after carbonization (Figure 1b right).
The shrinkage is the consequence of the loss of mass during the exposure to elevated temperature
(Figure 3).
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Figure 3. Thermogravimetric analysis of (a) globular polypyrrole and (b) polypyrrole nanotubes in air
and in nitrogen.

The conductivity of PPy obtained by oxidative polymerization of pyrrole with iron(III) chloride
is usually around units S·cm−1 [31,32]. In the presented case, the conductivity of globular PPy was
of the order of 10−2 S·cm−1 (Table 1). By changing the morphology from globules to nanotubes,
the conductivity increased to 60 S·cm−1. After the deprotonation with ammonium hydroxide the
conductivity decreases by several orders of magnitude due to conversion of conducting PPy to
less conducting PPy base. Polypyrrole bases have originally been intended for the application in
electrorheology [33–35] but, for that purpose, the conductivity of the nanotubular form was too high.
For that reason, the samples have been tested in the present study for sensing properties, where the
level of conductivity is suitable.

Table 1. Conductivity and specific surface area of globular and nanotubular PPy salts, bases, and their
carbonized analogs.

Sample
Conductivity (S·cm−1) Specific Surface Area (m2·g−1)

Salt Base Carbonized Base Salt Base Carbonized Base

PPy nanotubes 60 a 6.7 × 10−2 a 6.7 × 10−6 75 63 211
Globular PPy 0.011 3.4 × 10−5 1.4 × 10−7 26 25 150

a Measured on pellets compressed at 530 MPa pressure. Pellets could not be prepared from other samples.
Their conductivity was estimated in a powdered state. Such conductivities are usually one to two orders of
magnitude lower compared with those of the pellets.
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3.1. Analytical Carbonization

To get a deeper insight into the process of carbonization, thermogravimetric analysis was
performed both in air and nitrogen atmosphere. The analysis in air illustrates the complete destruction
of PPy between 550 ◦C and 600 ◦C (Figure 3a). There is no significant difference in the thermal stability
between globular and nanotubular forms of PPy. A residue of ≈5 wt % is most likely represented by
iron oxides produced from the oxidant, iron(III) chloride.

In inert nitrogen atmosphere, however, the residue is in both cases above 50 wt % at 650 ◦C.
Also here, there is no substantial difference in the stability of globular and nanotubular PPy
(Figure 3b). This is logical, because the thermal stability is established by molecular, rather than
supramolecular, structure.

3.2. FTIR Spectroscopy

3.2.1. Polypyrrole Bases

Infrared spectra of granular and nanotubular PPy bases (Figure 4) are close to each other and
correspond well to the spectra of PPy bases described in the literature [23]. We observe a broad
absorption band at wavenumbers above 2000 cm−1, and the band at about 1700 cm−1 which
corresponds to the presence of a carbonyl group formed by the nucleophilic attack of pyrrole by
water during the preparation [21,23]. The band at 1572 cm−1 is assigned to C–C stretching vibrations in
the pyrrole ring, the band at 1475 cm−1 to C–N stretching vibration in the ring. A broad band attributed
to C–H or C–N in-plane deformation modes with a maximum at 1300 cm−1 is well detected in the
spectra. In the region of the C–H and N–H in-plane deformation vibrations from 1250 to 1000 cm−1,
we observe a maximum at 1170 cm−1 in the spectra of PPy base. The bands corresponding to the
C–H and N–H in-plane deformation vibrations are situated at 1030 cm−1 and to C–C out-of-plane
ring-deformation vibrations at 965 cm−1. The C–H out-of-plane deformation vibrations of the pyrrole
ring (at about 907 cm−1) and of the C–H out-of-plane ring deformations (at about 776 cm−1) are present
in the spectra of the PPy base.
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3.2.2. Carbonized Materials

In the FTIR spectra of carbonized PPy bases, we observe a local maximum at 1572 cm−1,
and a broad band with a maximum at about 1280 cm−1. The first band emerged from the C–C stretching
vibrations in the pyrrole ring, the second from the C–N in-plane deformation modes. The shape of the
spectra is close to that of the spectra of a carbon-like material with the Raman-active D and G bands,
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which are usually inactive in FTIR spectra. In disordered samples, however, they become IR-active
because of symmetry-breaking of the carbon network, but they are rather weak and the spectra are flat
and almost featureless.

3.3. Raman Spectroscopy

3.3.1. Polypyrrole Bases

Raman spectroscopy is well suited to characterize the progress of carbonization (Figure 5).
Raman spectra of powdered samples have been recorded with excitation wavelength 785 nm.
The spectra of globular and nanotubular PPy bases differ in elevated intensity and narrower shape
of the band located at 930 cm−1 (C–H out-of-plane deformation vibrations of dication-bearing
unit [36]), the presence of band at 1555 cm−1, and a shoulder around 1415 cm−1 in the case of
nanotubular PPy. The PPy base bands are located at 1615 cm−1 (C=C stretching in the pyrrole
ring), 1495 cm−1 (C=N stretching vibrations in the pyrrole ring), 1390 cm−1 (C–H and N–H bending,
1330 cm−1 (C–C stretching of neutral units), 1245 cm−1 (antisymmetric C–H bending), 1045 cm−1

(in-plane ring-deformation vibrations) with a shoulder at 1090 cm−1 (C–H, N–H and out-of-plane
ring-deformation vibrations), 980 cm−1 (C–C deformation vibrations in neutral rings), 687 cm−1,
and 617 cm−1 (ring-deformation vibrations).
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3.3.2. Carbonized Materials

In the Raman spectra of carbonized PPy the band at 1590 cm−1 (emerged from the C=C stretching
vibrations of the pyrrole ring) and the broad band centered at 1330 cm−1 (emerged from the C–C
stretching vibrations of the pyrrole ring) can be observed. These bands can be considered as G-band
(“graphitic” band, C=C stretching vibrations of any pair of sp2 sites) and D-band (“disorder” band,
breathing of aromatic rings activated by any defect including a heteroatom), bands defined for graphitic
material [37] and proved to be usable for nitrogen-doped graphitic material. The spectrum corresponds
to a disordered nitrogen-containing graphitic material.

3.4. Vapor Response

In the case of globular PPy samples, the resistivity of the prepared materials was too high, thus the
vapor response properties of corresponding sensors were not measurable. The response properties of
both PPy nanotubes as well as their carbonized forms were obtained (Figures 6 and 7). When detecting
ethanol vapors (Figure 6), the sensitivity (i.e., a relative increase in resistance) of both nanotubular
samples differs only slightly (i.e., 18% for non-carbonized PPy and 24% for a carbonized analog).
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When detecting n-heptane (Figure 7), the significantly better sensitivity of 110% was determined for
the original PPy nanotubular base, while the carbonized ones exhibit only a 20% response. The high
sensitivity to n-heptane is remarkable because typical values reported in the literature for detection
of alkanes are of the order of units of a percent [38]. We can speculate that the high sensitivity of
as-synthesized of PPy to n-heptane is connected with the reduction of humidity level in the sample and
consequent increase in its resistivity. Another interpretation of this phenomenon can be made according
to basic theory of sensing mechanisms on conducting polymers [39–42]: Doping and undoping play
key roles in the sensing mechanism of conducting polymer based sensors. Their doping level can be
altered by transferring electrons from or to the sensitive layer. All π- or σ-electron donating gases can
be detected. Our analyte (n-heptane) probably acts as an σ-electron donor.
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There is still one important trend observable (Figures 6 and 7), a significantly faster response
of carbonized nanotubes on the change of the vapor environment especially in recovery process for
both investigated solvents. This is probably due to structural changes during carbonization which are
connected with increasing material porosity.

To determine the detection limit for ethanol and n-heptane, we can take into account
a conventional definition that the minimum detectable signal (i.e., detection limit) of a sensor
should be calculated as a value of input quantity which causes change of output quantity three
times higher than it is the effective noise of output quantity. When evaluating the meta-data for
Figures 6 and 7, we observed that the level of noise of sensor output is lower for carbonized polypyrrole
nanotubes than for as-prepared polypyrrole nanotubes (this is a positive aspect of the former sensors).
With respect to meta-data and the above-mentioned definition the detection limits were calculated as
follows: 3000 ppm of ethanol on carbonized PPy nanotubes; 5000 ppm of ethanol on PPy nanotubes;
and 10,000 ppm of n-heptane on carbonized PPy nanotubes; 5000 ppm of n-heptane on PPy nanotubes.

A comparison of our sensitivity results with those found in the literature is included in Table 2. It is
limited to detection of two relevant classes of compounds—alkanes and alcohols—on PPy nanotubes
or their carbonized analogs. We have converted various expressions of sensitivity reported in original
references to a quantity defined as the relative change in the resistivity, S = (∆R/R0) × 100 [%].

Table 2. Overview of sensitivity of sensors based on PPy nanotubes, nitrogen-containing carbons, and
MWCNT. The detected analytes are alkanes and alcohol vapors.

Sensor Design Detection Conditions

Sensitive Material Analyte Concentration S (%) Temp./Hum.
(◦C)/(% RH) References

Sensors of this work

PPy nanotubes
deprotonated

ethanol
saturated vapors

at 25 ◦C

18

25/0 This work
n-heptane 110

PPy nanotubes carbonized ethanol 24
n-heptane 20

Polypyrrole based sensors a

PPy/sulfate propane/butane 1040 ppm 55 27/35 [39]

PPy/Cl– hexane - 0.8
100/0 [38]methanol 5

PPy/ClO4
−

iso-butanol

saturated vapors
at 25 ◦C

15.5

25/0 [15]

ethanol 10.4
iso-propanol 15.8

n-pentanol 11.2

PPy/PF6
−

iso-butanol 0.5
ethanol 3.2

iso-propanol 0.6
n-pentanol 1.1

PPy/CF3SO3
−

iso-butanol 3.0
ethanol 7.5

iso-propanol 4.4
n-pentanol 1.3

PPy/camphorsulfonate

iso-butanol 6.1
ethanol 5.8

iso-propanol 5.7
n-pentanol 5.1
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Table 2. Cont.

Sensor Design Detection Conditions

Sensitive Material Analyte Concentration S (%) Temp./Hum.
(◦C)/(% RH) References

PPy/p-toluenesulfonate methanol

-

18

- [40]
ethanol 10

PPy/3-nitrobenzenesulfonate methanol 11
ethanol 6

Nanostructured
PPy/ClO4

−

methanol

11% wt. of VOC
in n-hexane

2.9

120/0 [41]

ethanol 0.58
n-propanol 0.22

iso-propanol 0.18

Nanostructured
PPy/p-toluenesulfonate

methanol 1.5
ethanol 0.75

n-propanol –

iso-propanol –

PPy/PCP a methanol – 7 –/0

[42]

ethanol 7

PPy/PEO methanol 3.5
ethanol 5.5

PPy/PMMA methanol 65
ethanol 20

PPy/PVAL methanol 14
ethanol 14

PPy/PVAc methanol 27.5
ethanol 37.5

CNT based sensors

MWCNT
iso-pentane

saturated vapors
at 25 ◦C

20.3

25/60 [3]
methanol 13.6

MWCNT/PMMA
iso-pentane 12.6
methanol 14.7

MWCNT/PMMA
methanol

saturated vapors
at 25 ◦C

429

–/0 [4]
hexane –

Surface modified
MWCNT/PMMA

methanol 4500
hexane –

MWCNT
iso-pentane

saturated vapors
at 25 ◦C

20.6

25/60 [5]
methanol 12.9

Oxidized MWCNT
iso-pentane 12.0
methanol 46.6

a Definition of abbreviations: PCP—polycaprolactone, PEO—poly(ethylene oxide), PMMA—poly(methyl
methacrylate), PVAL—poly(vinyl alcohol), PVAc—poly(vinyl acetate), MWCNT—multi-wall carbon nanotubes,
CVD—chemical vapor deposition, VOC—volatile organic compounds.

For alkanes detected on PPy (Table 2), there is reported detection of 1040 ppm of propane/butane
with sensitivity 55% [39], and an unknown concentration of hexane with sensitivity 0.8% [38]. In the
present case, it was 60,000 ppm of n-heptane with sensitivity 110%. As for alkanes detected on carbon
nanotubes, only response to the saturated vapor is reported (i.e., 905,000 ppm at 25 ◦C) of iso-pentane
which yielded sensitivity of 20.3%, 12.6%, 20.6%, and 12% at various conditions [3]. The present result
is 60,000 ppm of n-heptane with sensitivity of 20%.

As for alcohol vapors detected on PPy, there are mainly responses reported to vapors saturated at
25 ◦C (their concentration is in the order of 10,000–100,000 ppm) in dependence on the number of carbon
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atoms in the alcohol molecule. The sensitivity varies from 0.22% to 37.5% [15,38,40–42]. The present
result is 18% for 77,000 ppm of ethanol. As for alcohol vapors detected on carbon nanotubes—for
saturated methanol vapor there was reported sensitivity from 12.9% to 46.6% [3,5]—one paper presents
significantly higher sensitivity, i.e., 429% and 4500% for saturated methanol vapor [4], while the result
of this study is 24% for 77,000 ppm of ethanol.

To conclude, the preliminary results related to detection of n-heptane are significantly better than
the average of those reported elsewhere. When comparing the response to alcohol vapors, there is
a wide range of sensitivities; and they should be assessed case-by-case. The values obtained in this
study are approximately in the middle of interval of reported sensitivities [3,5]. The detection of both
alkanes and alcohol vapors will be the subject of our further systematic research.

4. Conclusions

During the oxidation of pyrrole with iron(III) chloride, globular morphology of PPy is transformed
to nanotubes by addition of methyl orange. PPy bases obtained after deprotonation convert to
nitrogen-containing carbon by heating to 650 ◦C in inert atmosphere. The original morphology is
preserved after carbonization. Conductivity of PPy was reduced after the conversion to bases as well as
after subsequent carbonization. The conductivity of globular form becomes too low for the application
in sensors. The nanotubular PPy base, however, was demonstrated to respond to ethanol or n-heptane
vapors by the change in resistivity. The sensitivity of the original nanotubular base to n-heptane
reached 110%, which is a unique result, and even the carbonized analog maintained a 20% sensitivity.
The recovery was faster in the carbonized PPy. Organic vapor may reduce the humidity in the samples
and thus cause a consequent increase in the resistivity.
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