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Abstract 

 
The Controller Area Network (CAN bus) is a bus based on differential signalling originally developed for automotive 
industry. The bus was later standardized under ISO 11898 and the standard describes data link layer as well as physical 
signalling. CAN bus allows precise settings of bus timing and sampling points, which makes it usable for varying ranges 
and baudrates. It also has a number of properties such as: message acknowledgement, collision avoidance, message 
filtering and automatic retransmit of faulty messages. These properties make it suitable for many applications. 
Furthermore, the bus is also well supported on microcontrollers and can even be found on larger SoCs. This makes the 
CAN bus ideal for microcontroller networks in buildings. 
Unfortunately, the CAN protocol itself has no support for node authentication and message encryption so these 
requirements has to be solved on higher layer. We present a high-level protocol for CAN bus that supports authentication 
and encryption and therefore allows usage of CAN bus in security dependent systems such as an access management 
system or in industrial automation. 
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1. Introduction 

 

Electronic access management systems are getting increasingly popular and are typically included in designs for 

new buildings. However, many of used solutions lack security against inside attackers and rely on a bad accessibility of 

communication wires. Because these systems are typically composed of microcontrollers, these are typically connected 

together through one of the long range communication buses such as TIA/EIA-485, TIA/EIA-422 or CAN bus. Using 

CAN bus inside this environment can be especially advantageous, because it has a number of features that distinct it from 

other buses [8]. Each message on a CAN bus is broadcasted through network and there is no addressing and authentication 

mechanism. These features are however, if necessary, easily solved by using a high-level protocol. Here we investigate 

requirements for such protocol and a motivation for including these features inside a protocol. Next we lay out a 

specification of a protocol implementing these requirements and examine its performance in a real environment. Lastly, 

we discuss comparison of the designed protocol with existing solutions and explore its extensions over other buses. 

 
Field name Length (bits) 

Start-of-frame 1 

Identifier A 11 

Substitute remote request (SRR) 1 

Identifier extension bit (IDE) 1 

Identifier B 18 

Remote transmission request (RTR) 1 

Reserved bits (r0, r1) 2 

Data length code (DLC) 4 

Data field 0-64 

CRC 15 

CRC delimiter 1 

ACK slot 1 

ACK delimiter 1 

End-of-frame (EOF) 7 

 

Table 1. CAN Frame Structure 

 

1.1. CAN bus frame format 

 

The CAN bus protocol can currently be found in several versions that differ in a frame format. The newest CAN 

specification - CAN 2.0 specifies two formats - standard format CAN 2.0A with an 11-bit identifier and extended format 

CAN 2.0B with a 29-bit identifier. Since most microcontrollers available on market offer both of these standards, it makes 

sense to use the extended variant because it allows to transmit more control bits in single frame, thus reducing arbitration 

collisions and allowing more flexibility in usage of identifier bits. Further references to CAN bus therefore operate with 

standard CAN 2.0B. 

 

2. Proposed protocol 

 

2.1. Definition of requirements 

 

The following list describes requirements that were defined for developed protocol along with justification of each 

requirement. 

 

 Absolute device identification - Each node connected to the network should have its unique ID - equivalent of 

MAC address in Ethernet. This ID is used to configure relations between devices and to resolve and find dynamic 

addresses. 

 Automatic dynamic addressing - To make absolute address unique, it has to be composed of large number of 

bits. This makes this address impractical for use during normal network operation because of limited number of 

bytes that can be transmitted inside single CAN frame. Consequently, each node inside the network has to be 

addressable by a shorter dynamic address. Since the network can be composed of large number of 

microcontrollers (64 for example), manual configuration of each node can be difficult and error prone. 

 Point-to-point encryption - The network may be composed of devices with different amount of security, so the 

actual content of message should be visible only to node that possess the valid key. Furthermore, compromise 

of single key shall not endanger entire network. 
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 Broadcast - Broadcast is an effective way to implement many of required tasks, such as dynamic address 

resolving and network scanning. 

 Ability to send and identify unencrypted messages - For some of the service messages (dynamic address 

resolving, network scanning) it makes no sense to enforce encryption. Encrypted and plain messages should 

therefore be clearly distinguishable. 

 Verification of successful decryption - The CAN frame contains CRC-15-CAN checksum which allows the 

receiving node to quickly check if the data were received correctly. However, this checksum cannot be used to 

ascertain if the key used to encrypt and decrypt data is the same which may be problematic for transmission of 

binary data over network. Therefore, the protocol has to offer some other facility which would allow to check 

origin of received data. 

 Frame numbering - Single CAN frame can carry as much as 8 bytes of data. For applications that require sending 

of larger messages, it is necessary to number frames to determine order of frames and how many frames is 

remaining (to find if the message is ready for further processing). This feature does not necessarily have to be 

implemented inside a protocol, but can greatly simplify applications based upon protocol and plays well with its 

other features. 

 

2.2. Protocol implementation 

 

2.2.1. Frame format:  

 

The length of single CAN frame can range from 64 to 128 bits with service bits taking up more than the actual 

data in most cases. For this reason, some high level protocols harness bits inside the identifier part of frame (e.g. 

CANopen, ARINC 825, VSCP). Other protocols put control bits in data part, thus further decreasing the amount of data 

that can be transmitted in single frame (e.g. CANaerospace). The proposed protocol utilizes the former approach and puts 

service bits inside the CAN identifier. The extended CAN frame identifier is 29 bits long and is composed of two parts: 

11 bits identifier and 18 bits identifier. Both parts are used by proposed protocol. As can be seen from figure 1, the 

combined identifiers are further split into six fields. 

 

 CMD is 7 bits long and specifies a command. There can be up to 128 commands, where the first 10 are defined 

by protocol and the rest is user defined. 

 REM (as in remaining) is 4 bits long and describes how many fragments of single message are remaining. 

 SRC is an 8 bits long source address. 

 DST is an 8 bits long destination address. 

 ENC (as in encrypted) is a 1 bit specifying if the frames data are encrypted. 

 RSV is a 1 bit reserved for future use. 

 

 
 

Fig. 1. CAN Frame Structure. 

 

2.2.2. Addressing scheme 

 

 

Each node has its own unique address that is 8 bytes long. This unique address can either be deduced from serial 

number of a microcontroller or defined by a manufacturer. The 1 byte long dynamic address is resolved during device 

startup with the help of other devices on the network. Initially, this dynamic address is calculated through hashing function 

from the 8-byte unique address. Given the reduction of information from 8 bytes to 1 byte, collisions of this generated 

address could occur if there was no other mechanism involved. For this reason, after generating dynamic address, the 

device has to query network through broadcast to find out if the address is not already in use. Because addresses generated 

this way are not persistent and are re-generated again after each power-up, the network can easily deal with on-demand 

integration and separation of new devices. 
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Fig. 2. Dynamic address resolving. 

 

2.2.3. Encrypted session & key exchange 

 

Once the one node wants to start communication with another node, it first has to fulfill two requirements. First 

it has to know the unique address of the target node and second it has to share a common key with target device. This 

means that both devices has to be configured to talk to each other and have a randomly generated pre-shared key, that is 

used for mutual authorization and generation of a session key. First the node that initiates the connection has to discover 

network address of the target node. This is done by broadcasting frame with command DiscoverNodeRequest and data 

part that contains unique address of target node. If the network contains such a node, the node is required to reply by 

broadcasting frame with command DiscoverNodeReply and data part containing its own unique address. The network 

address is already present in frame header and can be extracted from there. 

After both nodes get network addresses of each other, the encrypted session can be initiated. To check 

authenticity of both nodes and create a session key, variation to the three pass authentication scheme as described in 

ISO/IEC 9798-2 is used. Following list describes used authentication scheme. 

1. A generates a random number RndA, encrypts it using pre-shared key and sends it to B. 

2. B decrypts received data, generates a random number RndB, and creates a token RndBRndA’ that is comprised 

from internally rotated RndA and RndB. This token is then encrypted using a pre-shared key and transmitted to 

A. 

3. On receipt of the message containing encrypted token RndBRndA’, A verifies B by deciphering message with 

pre-shared key and then checking that the random number RndA’ gained from message is equal to internally 

rotated RndA sent to B in step (1). If the numbers match, authenticity of B is verified. A now rotates received 

RndB to RndB’, encrypts it and transmits it to B. 

4. B deciphers a received message, rotates RndB originally sent in step (2) and compares it to received RndB’. If 

the numbers are equal, authenticity of A is validated. 

5. Because both nodes now possess both RndA and RndB, these numbers can be used to derive session key. The 

16-byte session key is gained by taking the first 4 bytes of RndA + first 4 bytes of RndB + last 4 bytes of RndA 

+ last 4 bytes of RndB. This way, if one of the generated random number was full of zeros, the complete key 

would not be degraded. 
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Fig. 3. Tree-way authentication scheme. 

 

2.2.4. Used cipher 

 

When working with microcontrollers, there is often a necessity for compromises due to a memory and processing 

power constraints. Some ciphers require large lookup tables and are significantly slower without them. And while these 

issues can be mitigated by using a microcontroller with build-in cryptographic unit, careful selection of cipher is always 

a necessity. Single CAN frames can contain up to 64 bits of data and this value should ideally be the same as block size 

of used cipher to avoid unnecessary padding and following transmission of extra frames. Furthermore, when we examine 

available microcontrollers with build-in cryptographic units, we can find that these units typically offer only DES, 

TripleDES and AES algorithms. Because AES has block size of 128 bits, each message would have to be padded to 

multiples of 128 bits, reducing network efficiency for messages composed of odd number of frames. DES cipher is 

generally considered unsafe due to its key length which is only 56 bits, making brute force attack on cipher feasible. The 

TripleDES standard defines three distinct keying option with various security [1]. Option number 1 uses 3 independent 

keys of size 56 bits, however due to Meet-in-the-middle attack [2], [11], [12], the effective security of this options is only 

112 bits. Option number 2 uses only 2 keys with length of 56 bits making final key length 112 bits. However due to 

known attacks based on chosen-plaintext [7] and known-plaintext [10], the final security of this option is designated to 

be 80 bits. The proposed protocol uses TripleDES cipher with keying option 2 (112-bit key with Encrypt-Decrypt-Encrypt 

sequence). Multiple blocks of 64 bits are encrypted using Cipher-Block-Chaining (CBC) mode of operation [3]. Note that 

this option was picked to allow efficient key exchange over CAN bus. Consequently, protocol could be easily modified 

to use keying option 1 or a different cipher altogether. 

 

2.2.5. Encrypted message format 

 

The protocol uses symmetric block cipher with block size of 64 bits to encrypt content of messages. Messages 

are therefore always padded with zeros to multiples of 64 bits. For messages longer than 1 block, Cipher-block-

chaining(CBC) mode is used. To guarantee that message was deciphered correctly, an 8-byte message authentication code 

(MAC) is appended as the last frame for each encrypted message. The MAC used inside this protocol is commonly 

referred to as One-Key CBC-MAC (OMAC) or Cipher-based Message Authentication Code (CMAC) and the core of the 

algorithm is described in NIST Special Publication 800-38B - Recommendation for Block Cipher Modes of Operation: 

The CMAC Mode for Authentication [4]. 

 

3. Protocol performance and comparison with other networking options 

 

3.1.1. Network throughput for various types of messages 

 

For large networks with large distances between nodes, the CAN bus can only be used with reduced baud rates. 

It is therefore important to be able to use given bandwidth efficiently to reduce arbitration conflicts and to allow low 

reaction times. This efficiency is different for encrypted and plaintext messages, because encrypted messages always has 

to be padded to cipher block size. In addition, each encrypted messages is complemented by one frame CMAC used to 

verify if the message was decrypted correctly. Each CAN bus frame is composed of framing and actual data. For CAN 

2.0B, the total size of framing section is 64 bits. Efficiency for plaintext and encrypted messages can be calculated 

according to equations 1, 2.  

 

 
     dataLengthdataLength
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
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Figure 4 captures relation between message length and efficiency of transmission. Note that bits used by protocol 

inside framing part are not included inside calculation as information bits even though it could be argued that they do 

carry information - about source and target nodes, used encryption and command. However, to make protocol comparable 

with other high-level protocols that are broadcast oriented, it was decided to omit these bits from the calculation. As can 

be seen of figure 4, the efficiency is lowest when CAN frame is only partially filled - e.g. 2 of 8 byte of data with the 

most extreme case being zero transmitted bytes. Efficiency of usage then climbs until it hits 8-byte boundary and another 

frame has to be transmitted over network. While average effectiveness of plaintext messages is almost 45%, for encrypted 

messages, this number is significantly lower at around 33%. Loss of efficiency for encrypted messages is caused by a 

necessity to pad and transmit always 8 bytes of data. Furthermore, each encrypted message is concluded with one full 

frame containing CMAC. Practical efficiency is of course highly dependent on distribution of message lengths. 

 

3.1.2. Usability of protocol on other buses 

 

The protocol builds upon some of the features of the CAN bus. Nevertheless, it is possible to modify it to work 

on other buses, such as TIA/EIA-485. On these buses, CAN framing can be emulated by transmitting each byte of frame 

and actual data separately. However, since these buses are not built to work as multi-master, collisions may occur if all 

devices are free to transmit. 

 

 
 

Fig.  4. Relation between length of transmitted data and framing efficiency 

 

3.1.3. Resistance to attacks 

 

While the cipher used in protocol should be theoretically safe for following years, implementation of this protocol 

may be vulnerable to side-channel attack, especially to differential power-analysis [5]. In this case, keys can be recovered 

due to current fluctuations during encryption and decryption. These types of attacks can be mitigated by inserting random 

operations into encryption and decryption process. This protocol is currently vulnerable to replay attacks [9] due to 

missing key-update mechanism. This problem can be addressed in a number of ways, the simplest one being an extension 

of the CBC encryption schema over all transmitted and received messages respectively, thus making it impossible for an 

attacker insert forged frames into communication. In this case, padding of plain-text could be done with random values, 

thus further diversifying communication and making it harder for an attacker to capture repeating sequence. 

 

3.1.4. Limitations 

 

The proposed protocol conforms to limitation of CAN bus data link layer, specifically maximum length of data 

in a single frame. This limitation is present due to the original deployment in automotive field, where was no need for 

longer data. One way bypass it is to use newer version of CAN bus – CAN FD, however this version is not yet widely 

supported in various microcontrollers. 

The second shortcoming comes from usage of block cipher, which forces to align data to single block sizes. One 

possibility is to use some stream cipher instead and consequently resolve the vulnerability to replay attacks.  

 

4. Conclusion 

 

In this paper, we examined requirements for a secure protocol on a CAN bus along with a justification for these 

requirements. Next, we presented a protocol that implements these requirements and thus can be used in environments 

that require secure communication such as access management systems. The proposed protocol was implemented and 
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tested inside several scenarios comprised of multiple types of devices and no design faults were discovered so far. While 

there exists other protocol already in use, they are often too specialized for some tasks - lightning control, air flow 

automation etc. Our protocol allows its user to define custom commands which makes it along with its simplicity an ideal 

candidate for simpler projects where security matters. 

Implementing this protocol allows its user to create dependable and secure network of embedded devices, and to focus 

on the real application. However, due to need for multiple frames in some scenarios, strict priorities and real-time 

responsiveness are sacrificed. 

For further work, we will focus on proofing the implementation against existing attacks and on solving secure 

key-update mechanism. 
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6. Appendix A. List of reserved commands 

 
Command ID Command name Description 

1 IDAnticollisionRequest Transmitted by a node after it generates its dynamic address. 

2 IDAnticollisionReply Broadcasted on a network by a node if it receives 

AnticollisionRequest with its address. 

3 DiscoverNodeRequest Broadcasted along with an unique address of target node to 

discover its dynamic address. 

4 DiscoverNodeReply Transmitted by a node that detects DiscoverNodeRequest 

with its unique address. 

5 Accepted Generic acceptance reply. 

6 Rejected Generic rejection reply. 

7 SessionRequest Initiates first stage of three-way authentication. 

8 SessionReply Second step of three-way authentication. 

9 SessionCheck Last step of three-way authentication. 

10 InvalidSession Used to inform another node that CMAC check failed 
   

 

Table 2. Reserved commands 
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