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Abstract

The chemiluminescence of UV irradiated aromatic-aliphatic polyester Ecoflex was
examined in nitrogen and oxygen atmospheres during non-isothermal temperature runs
in the interval from 40°C to 250°C. With prolongation of the UV irradiation period, the
character of hydroperoxides in the Ecoflex changed, and the less stable hydroperoxides
predominated. The half times of hydroperoxide decomposition, estimated from
chemiluminescence measurements at 58°, were comparable with the mineralization
times of the above polymers in composting biodegradation experiments, which may
indicate the supporting role of UV light to the final conversion of the polyesters to
carbon dioxide in their biodegradation.

Introduction

The UV irradiation of environmentally degradable polymers which are used as films in
traditional packaging applications and increasingly recently as mulching films [1] in
agriculture represents a laboratory means of assessing their applicability. Mulching films
are applied directly to the surface of soil, where they retain moisture and increase
surface temperature. The proper use of the mulching films can also lead to reductions in

non-effective herbicide and pesticide applications. Useful materials for packaging and
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mulching films, those exhibiting satisfactory mechanical and processing properties that
are also available for a reasonable price, include among others, aliphatic and aliphatic-
aromatic co-polyesters, either synthetic or fully or partially derived from renewable
resources [2,3]. Examples of such commercially available materials are Ecoflex (BASF),
PBAT (e.g. EnPol Ire) and PLA. Ecoflex comprises the subjects of this study. Polylactic
acid (PLA) that can be obtained from renewable resources has relatively poor physico-
chemical and processing properties [4] and improvements should be sought out. A
generally known principle is that, in copolyesters, favorable processing and mechanical
properties can be positively influenced by the content of the aromatic component, while
an aliphatic component can support the biodegradability of the material [5,6].

When applied to the surface of soil, these materials are heavily influenced by
environmental factors, of which the effect of solar radiation is probably essential. A
relatively rapid change in the investigated material in an outdoor field experiment, and
also in a corresponding laboratory experiment, where the material was exposed to long-
wave ultraviolet radiation, has been observed [7,8.9]. At a molecular level, the
deterioration of mechanical properties correlated with the crosslinking of polymer chains
and the formation of a gel fraction [9,10].

In this paper, the effect of UV irradiation on aromatic-aliphatic copolyester Ecoflex is
studied from the changes in the corresponding chemiluminescence patterns under both
nitrogen and oxygen atmospheres.  The changes in fully controlled laboratory
experiments were evaluated from the aspect of accumulation of hydroperoxides (non-
isothermal chemiluminescence in nitrogen), while the residual degradability of the above
samples was assessed by chemiluminescence measurements in oxygen. As previously
indicated [9], photochemical reactions may lead ultimately to crosslinking of the material
initiated on the aromatic ring. This was particularly reported for Ecoflex, while polylactic
acid underwent degradation only [10]. The search of possible links between
photodegradation and biodegradation is justified by the Scheme 1, involving the
fragmentation of polymer chains by the action of extracellular enzymes and chain

cleavage initiated by UV radiation occurring in parallel.
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Photodegradation

Samples were exposed to UV irradiation at 60°C in an accelerated photo-ageing device
based on a SEPAP 14-24 device [12]. This polychromatic set-up was equipped with a
‘medium pressure’ mercury source filtered by a borosilicate envelope (Mazda type MA
400), supplying radiation of wavelengths longer than 300 nm. This source is located
along the focal axis of a cylinder with an elliptical base. Sample films, fixed on aluminum
holders, turned around the other focal axis. The inside of the chamber is made of highly
reflective aluminum. The temperature of samples was controlled by a thermocouple
connected to a temperature regulating device, which controls a fan. The films were
irradiated for various exposure times from 0-100 hours. It was assessed that one hour
of such irradiation is equivalent to one day of outdoor exposure of the polymer in a mild

climatic zone during summer months [13].
Chemiluminescence

Chemiluminescence measurements were performed in a Lumipol 3 photon-counting
instrument manufactured at the Polymer Institute of the Slovak Academy of Sciences.
The cut film sample (from 5 to 7 mg) was placed on an aluminum pan of diameter 9 mm
in the sample compartment. The gas flow (oxygen or nitrogen) through the sample cell
was 3.0 L h™". The temperature in the sample compartment of the apparatus increased
linearly with time from 40 °C up to 250 °C, at the rate of 5 °C min™'. The signal of the

photocathode was recorded at a 10-second data collection interval.

Evaluation of nonisothermal chemiluminescence measurements

The kinetic model used for the deconvolution of nonisothermal chemiluminescence runs
takes into account the papers by Ekenstam [15] and Emsley [18] for the degradation of
cellulose. It is described elsewhere [17]. We remind here only the resulting equation
used for the case of three independent processes composing the experimental pattern

of chemiluminescence intensity vs. temperature.
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Kinetic parameters corresponding to the respective regions dete.rmine:d acmi)::nl?
to Eq. 8 are summarized in Table 1. The half-lives at 58.°C determined -o;lregte tha;
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subsequent oxidative degradation extrapolated to 58 °C and 150 °C, which, in the case

of Ecoflex, increased progressively, and the 100-hour UV pre-oxidized sample was
more than 20 times higher at 58 °C and 10 times higher at 150 °C, in comparison with
the initial non-irradiated sample (Table 3). This indicates that UV irradiation creates
opportunities for easier subsequent degradation, which mi

biodegradation.

ght have an impact on easier

Conclusions

1. The rate constants of the decomposition of hydroperoxides trapped in UV
iradiated Ecoflex and estimated from non-isothermal chemiluminescence
measurements in nitrogen, were found to be approximately identical to literature
obtained data on polypropylene hydroperoxide decomposition.

2. The average rate constant of the oxidative degradation of Ecoflex increased
almost 20 times after the polymer was UV irradiated for 100 hours. This may
support the role of UV degradation in the subsequent biodegradation process
that may be expected for materials exposed to the external environment, for
example, on the surface of soil when used as mulching films.
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Tables

Table 1. Kinetic parameters from the regions 1, Il and Il of chemiluminescence measurements in nitrogen, caloulated according to
Eq.8 and the corresponding half-lives for region Il approximated to 58°C.

Region
Time, P, Aa, Ez, Tz
hours count/g s’ kdimol Days
Ecoflex 0 3.7e4 5.3e15 1679 >1000
10 1.4e6 1.1e8 941 96.5
25 1.8e8 5.2e10 113.3 127.2
100 1.2e6 3.3e11 115.9 53.6
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