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Abstract. The electrorheological characteristics of suspensions of PANI powders suspended in silicone oil measured by a 
rotational rheometer Physica MCR 501 (Anton Paar Co.) are compared for two different geometrical arrangements – 
parallel plates and concentric cylinders. The individual differences in the results of the measured parameters are 
discussed. 

INTRODUCTION 

The general validity and reproducibility of rheological measurements in various laboratories is neither simple nor 
obvious in spite of the permanent development of new sophisticated rheometers. There is a coincidence of ‘classical’ 
rheological characteristics (such as, e.g., shear viscosity) measured for common classical materials. However, for 
more complicated characteristics and materials the results are quite often different. This can be documented from the 
examples of M1 and A1 projects carried out in a considerable number of prominent laboratories round the world 
(Sridhar [1], Hudson and Jones [2]). The non-coincidence of elongational viscosity is remarkable. As the materials 
used were identical, it proves that other complementary attributes connected with rheological measurements 
substantially participate in the proper analysis of the studied materials. Generally, among other things, it is possible 
to mention the process of the preparation of the measured samples, the adequacy of their volume for an applied 
geometrical arrangement, the materials of which contact surfaces are made, the stability of rheometers, etc. The 
same problems concern not only measuring the rheological characteristics of the same material in different 
laboratories, but also measuring the same material at the same laboratory using different rheometers (Rides et al. [3]) 
or the same rheometer but with various geometrical arrangements (Modigell and Pape [4]).  

The literature describing and analysing this discrepancy is very scarce and does not correspond to the 
significance of the problem, which is further emphasized with the onset of a new generation of so-called smart 
materials such as those now appearing in magneto- or electro-rheology. 

Electrorheological (ER) fluids quickly and reversibly change their structure under the application of an external 
electric field. The formation of a chain-like structure occurs due to particle polarisation in the direction of an electric 
field. A number of studies of this mechanism have been summarized in several review papers (Block and Kelly [5], 
Jordan and Shaw [6], Block et al. [7], Parthasarathy and Klingenberg [8], See [9],  Hao [10,11], Sheng and Wen 
[12]). Most commercially available rheometers can be equipped with ER cells making full use of the functionality of 
the host instruments. In principle, these devices differ according to the geometry applied – with either parallel plates 
or concentric cylinders. 
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