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Abstract: Synthesis, identification and control of complex dynamical systems are usually extremely 
complicated. When classics methods are used, some simplifications are required which tends to lead to 
idealized solutions that are far from reality. In contrast, the class of methods based on evolutionary 
principles is successfully used to solve this kind of problems with a high level of precision. In this paper 
an alternative method of evolutionary algorithms, which has been successfully proven in many 
experiments like chaotic systems synthesis, neural network synthesis or electrical circuit synthesis. This 
paper discusses the possibility of using evolutionary algorithms for the identification of chaotic systems. 
The main aim of this work is to show that evolutionary algorithms are capable of the identification of 
chaotic systems without any partial knowledge of internal structure, i.e. based only on measured data. 
Two different evolutionary algorithms are presented and tested here in a total of 10 versions. Systems 
selected for numerical experiments here is the well-known logistic equation. For each algorithm and its 
version, repeated simulations were done, amounting to 50 simulations. According to obtained results it 
can be stated that evolutionary identification is an alternative and promising way as to how to identify 
chaotic systems. 
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1. INTRODUCTION 

Identification of various dynamical systems is vitally 
important in the case of practical applications as well as in 
theory. A rich set of various methods for dynamical system 
identification has been developed. In the case of chaotic 
dynamics, it is for example the well-known reconstruction of 
chaotic attractor based on research of Takens (1981) who has 
shown that, after the transients have died out, one can 
reconstruct the trajectory on the attractor from the 
measurement of a single component. Because whole 
trajectory contains too much information, series of papers by 
Grassberger, Hentschel and Procaccia (1983), Halsey et al. 
(1986), Eckmann and Procaccia (1986) is introduced to show 
a set of averaged coordinate invariant numbers (generalized 
dimensions, entropies, and scaling indices) by which 
different strange attractors can be distinguished. Method 
presented here is based on evolutionary algorithms (EAs), see 
Back et al. (1997), and allows reconstruction not only of 
chaotic attractors as a geometrical objects, but also their 
mathematical description. All those techniques belong to the 
class of genetic programming techniques; see Koza (1998), 
Koza et al., 1999]. Generally, when it is used on data fitting, 
these techniques are called symbolic regression (SR). 

The term symbolic regression (SR) represents a process, in 
which measured data is fitted by a suitable mathematical 
formula such as x2 + C, sin(x)+1/ex, etc., Mathematically, this 
process is quite well known and can be used when data of an 
unknown process is obtained. Historically SR has been in the 
preview of manual manipulation, however during the recent 

past, a large inroad has been made through the use of 
computers. Generally, there are two well-known methods, 
which can be used for SR by means of computers. The first 
one is called genetic programming or GP, Koza (1998), Koza 
et al. (1999) and the other is grammatical evolution, O'Neill 
and Ryan (2002), Ryan et al. (1998). 

The idea as to how to solve various problems using SR by 
means of EA was introduced by John Koza, who used genetic 
algorithms (GA) for GP. Genetic programming is basically a 
symbolic regression, which is done by the use of evolutionary 
algorithms, instead of a human brain. The ability to solve 
very difficult problems is now well established, and hence, 
GP today performs so well that it can be applied, e.g. to 
synthesize highly sophisticated electronic circuits, Koza et al. 
(2003).  

In the last decade of the 20th century, C. Ryan developed a 
novel method for SR, called grammatical evolution (GE). 
Grammatical evolution can be regarded as an unfolding of 
GP due to some common principles, which are the same for 
both algorithms. One important characteristic of GE is that it 
can be implemented in any arbitrary computer language 
compared with GP, which is usually done (in its canonical 
form) in LISP. In contrast to other evolutionary algorithms, 
GE was used only with a few search strategies, for example 
with a binary representation of the populations in O'Sullivan 
and Ryan, (2002). Another interesting investigation using 
symbolic regression was carried out by Johnson (2003) 
working on Artificial Immune Systems or/and systems which 
are not using tree structures like linear genetic programming 
(full text is at https://eldorado.uni-dortmund.de/bitstream 



 
 

     

 

/2003/20098/2/Brameierunt.pdf) and another similar 
algorithm to AP, Multi Expression Programming (see 
http://www.mep.cs.ubbcluj.ro/). 

Put simply, evolutionary algorithm simulates Darwinian 
evolution of individuals (solutions of given problem) on a 
computer and are used to estimate-optimize numerical values 
of defined cost function. Methods of GP are able to 
synthesize in an evolutionary way complex structures like 
electronic circuits, mathematical formulas etc. from basic set 
of symbolic (nonnumeric) elements. 

In this paper, analytic programming (AP) is applied, see 
Zelinka et al. (2008), Zelinka (2002a), Zelinka (2002b), 
Zelinka and Oplatkova (2003), Zelinka and Oplatkova (2004) 
for the identification of selected chaotic system. 
Identification is not done on the “level” of strange attractor 
reconstruction, but it produces a symbolic-mathematical 
description of the identified system. Investigation reported 
here is continuation of research done in Zelinka et al. (2008). 

2. MOTIVATION  

Motivation of this investigation is quite simple. As 
mentioned in the introduction, evolutionary algorithms are 
capable of hard problem solving. A lot of examples about 
evolutionary algorithms can be easily found. Evolutionary 
algorithms use with chaotic systems is done for example in 
Richter and Reinschke (2000) where EAs has been used on 
local optimization of chaos, Richter (2002) for chaos control 
with use of the multi-objective cost function or in Richter 
(2005, 2006) where evolutionary algorithms have been 
studied on chaotic landscapes. Slightly different approach 
with evolutionary algorithms is presented in Zelinka et al. 
(2008), selected algorithms were used to synthesize artificial 
chaotic systems.  In Zelinka (2006 & 2008) EAs has been 
successfully used for real-time chaos control and in Senkerik 
et al. (2006) and Zelinka et al. (2007) EAs was used for 
optimization of Chaos Control. 

Another examples of evolutionary algorithms use can be 
found in Dashora et al., (2007) which developed statistically 
robust evolutionary algorithms, and on the opposite side 
Hwang et al. (2007) used evolutionary algorithms for fuzzy 
power system stabilizer which has been applied on single-
machine infinite bus system and multi-machine power 
system. Other research was done by Liu et al. (2007). 
Parameters of permanent magnet synchronous motors has 
been optimized by particle swarm algorithm and 
experimentally validated on the servomotor. In Das and 
Konar, (2007), swarm intelligence has been used for IIR filter 
synthesis and He and Wang, (2007) applied co-evolutionary 
particle swarm optimization (CoPSO) approach for the design 
of constrained engineering problems, particularly for pressure 
vessel, compression spring and welded beam.  

The main question in the case of this paper is if EAs are able 
to identify chaos in symbolic i.e. mathematical description. 
All experiments here were designed to check and either 
confirm or reject this idea. 

 

3. CHAOS IDENTIFICATION - PROBLEM DESIGN  

3.1 Problem selection, used algorithms and computer 
technology 

Based on previous successful experiments of Zelinka et al. 
(2008), the well-known logistic equation (1) has been 
selected for experiments.  

(1) 

The selection has been made because its structure is simple, 
well studied and analyzed, however, this does not imply that 
other systems cannot be used.  

For the experiments described here, stochastic optimization 
algorithms, such as Differential Evolution (DE) (Price, 1999) 
and Self Organizing Migrating Algorithm (SOMA) (Zelinka, 
2004), have been used. Application of alternative algorithms 
like Genetic algorithm (GA) and Simulated Annealing (SA), 
are now in process.  

All experiments have been done on a special server 
consisting of 16 Apple XServer (2 x 2 GHz Intel Xeon, 1 GB 
RAM,), each with 4 CPU, so in total 64 CPUs were available 
for calculations. It is important to note here, that such 
technology was used to save time due to a large number of 
calculations (done during 500 simulations), however it must 
be stated that evolutionary identification described here, is 
also solvable on a single PC. For all calculations and data 
processing, Mathematica® version 6.0.3.0 was used.  

3.2 The Cost Function 

The cost function (2) has been designed so that its 
minimization should lead to the identification of a system 
with the same behaviour as the original system.  

(2) 

 

The cost function consists of two sums with datai, j
l  (sorted 

data representing behaviour of logistic equation) and 
datai, j

ident (sorted data representing behaviour of identified 

system). The first sum (i ∈ [300, 400]) represents the fact that 
synthesized systems has to be identified for the interval of the  
control parameter A ∈ [3, 4]) in which chaos is for (1) 
generated. Parameter A has been changed by step 0.01, so 
100 different time series was recorded. For each setting of A, 
300 iterations has been done. Last 100 data-points (from 300 
in total) were taken into calculation from each time series to 
calculate final sum (or create bifurcation diagrams) – this is 
represented by second sum (j ∈ [200, 300]). Based on 
previous facts, there was generated for each system 100 × 
300 = 30 000 values and its cost value calculation was 100 × 
100 = 10 000. Minimal value that can be achieved by (2) is 0, 
i.e. system with this cost value is probably an exact 
identification of the original system. 
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For all experiments a threshold has been set, which has been 
used for decision making, that the identified system belong to 
similar or exotic class of systems. System with cost value 
equal 0 which were exact identifications of the original 
system, with cost value ∈ [0, 1500] are reported as similar 
identifications and with cost value > 1500 as exotic 
identifications. 

4. EXPERIMENT SETUP 

Four versions of SOMA and six versions of DE have been 
applied in order with AP and were used for all simulations in 
this paper. See Table 1 and Table 2 for relation between each 
version and index corresponding to another Tables. 
Parameters for the optimizing algorithm were set up in such a 
way as to reach the same value of maximal cost function 
evaluations for all used versions. Each version of EAs has 
been applied 50 times in order to synthesize an appropriate 
structure which can serve as models of the observed chaotic 
system. 

The primary aim here is not to show which version is better 
or worse, but to show that the EA can in reality be used for 
identification of chaotic systems without knowledge of 
internal structure or/and auxiliary information. The ranges of 
all estimated parameters are reported in Table 3 and Table 4. 
Basic set of symbolic element (GFS) used for synthesis 
consist of : A, x, +, -, *, /.  

Table 1 Used Versions of SOMA 

Algorithm Index 
AllToOne S1 
AllToRandom S2 
AllToAll S3 
AllToAllAdaptive S4 

 

Table 2 Used Versions of DE 

Algorithm Index 
DERand1Bin D1 
DERand2Bin D2 
DEBest2Bin D3 
DELocalToBest D4 
DEBest1JIter D5 
DERand1DIter D6 

 

Table 3 SOMA setting 

 S1 S2 S3 S4 
PathLength 3 3 3 3 
Step 0.11 0.11 0.11 0.11 
PRT 0.1 0.1 0.1 0.1 
PopSize 200 200 40 40 
Migrations 8 8 4 4 
MinDiv -1 -1 -1 -1 
Individual Length 50 50 50 50 
Max. CF Evaluations 42984 42984 42120 42120 

Table 4 DE setting 

 

 D1 - D6 
NP 200 
F 0.9 
CR 0.3 
Generations 200 
Individual Length 50 
Max. CF Evaluations 40000 

 

Results from all experiments are reported in detail in the 
following sections. In totality, it can be stated that during all 
500 simulations, original logistic equation has been identified 
on 32 occasions (6.4% from all simulations), similar systems 
that less or more fit the behaviour of the logistic equation on 
79 occasions (15.8%). Therefore in total 111 identified cases 
(22.2%), as given in Table 5.  

Table 5 Experiment summarization 

Note Total value % 
Total number of simulations 500 100 
Exact identifications 32× 6.4 
Similar identifications 79× 15.8 
Total number of acceptable 
identifications 

111× 22.2 

 

5. EXPERIMENTAL RESULTS 

5.1 Exact identification 

During all simulations, the canonical version of the logistic 
equation has been synthesized 32× in total, (see Table 6). 
Logistic equation has been identified in 5 various versions 
which are clearly algebraic variation of its canonical version, 
i.e. after simple algebraic manipulations we get (1), see (3) - 
(7). 

Table 6 Summarization of canonical version synthesis 

Equation No. Synthesized 
(3) 6× 
(4) 14× 
(5) 4× 
(6) 3× 
(7) 5× 

Total 32×  
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5.2 Similar systems 

Beside the canonical version of the logistic equation there 
also been synthesized systems, which less or more fit the 
behaviour of the original system. Selected examples of very 
good approximation of (1) are for example systems (8) and 
(9), see Fig. 1.  Significantly “worst” approximations are for 
example (10) and (11), see Fig. 2 and Fig. 3. Corresponding 
cost values are given in Table 8. Minimal, maximal and 
average cost values of accepted similar systems (according to 
threshold) in this “category” are reported in Table 7. 

 

(8) 

 

 

(9) 

 

 

 

(10) 

 

 

(11) 

 

 

3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6

0.0

0.2

0.4

0.6

0.8

1.0

Control parameter A  

Fig. 1 The best-synthesized solution, see (8) and (9). Red 
(thin) points represent the canonical logistic equation; black 
(thick) points represent the synthesized system. 

 

 

 

Table 7 Similar systems – an overview 

 Cost value 
Minimum  
(the best, see Fig. 1) 

129.549 

Average 1001.02 
Maximum 1456.19 
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Fig. 2 Another solution, basically the same  behaviour of (1), 
only shifted along axis x, see (10). Red (thin) points represent 
the canonical logistic equation; black (thick) points represent 
the synthesized system. 
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Fig. 3 Basically the same case as in Fig. 1, see (11). Red 
(thin) points represent the canonical logistic equation; black 
(thick) points represent the synthesized system. 

 

Table 8 Cost values of similar systems 

System (Eq.) No. Cost value 

(8) 129.549 
(9) 136.706 

(10) 1048.72 
(11) 993.346 
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Behaviour of other similar systems is reported in Fig. 4. 
From the given figures, it is visible that evolution has found 
really similar systems and their precise “evolutionary 
adjustment” to the logistic equation is probably only question 
of better setting of evolution parameters. 

 

Fig. 4 A few another similar systems. Red (thin) points 
represent the canonical logistic equation; black (thick) points 
represent the synthesized system. Figures are drawn again in 
intervals x ∈ [3, 4.6] and y ∈ [0, 1] 

5.3 Exotic solutions 

Together with acceptable systems, other systems were also 
synthesized, which did not fit the threshold mentioned in the 
section Cost function. This category is termed  “exotic”, i.e. 
systems that are very different from the logistic equation, 
however there is still visible as a similar structure of logistic 
equation. An example can be the systems (12) and (13), 
which had been synthesized during all 500 experiments. For 
behaviour of systems (12) see Fig. 5, and for (13) see Fig. 6. 
Another selected example is depicted in Fig. 7. 
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Fig. 5 Example of “exotic” solution, see (12)  

 

 

Fig. 6 Another “exotic” solution, see (13) 

 

 

Fig. 7 Another “exotic” solution 

 

6. CONCLUSIONS 

Based on obtained results, it may be stated that simulations 
provided promising results, which shows that EAs are 
capable of model identification of chaotic systems. In this 
participation two evolutionary algorithms in 10 versions were 
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used and tested. Exact descriptions of logistic equation as 
well as its variations have been identified from the results 
(see for example (8)). The question is why such complex 
equation like (8) have similar behaviour to (1). The answer is 
simple. After expansion of (8), equation (14) is obtained The 
first part is basically the logistic equation (see Fig. 8). The 
remaining part participates on the final behaviour without 
significant impact (see Fig. 9).  

 

(14) 
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Fig. 8 Graph of the first part (Ax-Ax2) of  (14). 
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Fig. 9 Graph of the second part (14). 

Based on previously mentioned facts and all experimental 
results, conclusions and statements can be made as follows: 

Experiment overview. The cost function (2) consist of two 
sums where the total number of synthesized data-points was  
10 000 from 30 000 (see section “Cost Function”). Based on 
the fact that 500 experiments were conducted, 15 000 000 
data-points and 5 000 000 of these points were used for 
evaluation of all synthesized systems.  

Number of successful identification. In this participation, 
results were divided into three categories: exact, similar and 
exotic identifications. The representation is as follows: exact 
implies that logistic equation has been recovered in its 
canonical version (or its algorithmic variations), similar 

means that behaviour of the synthesized systems was visually 
the same (or same and shifted along x axis) like that of the 
logistic equation, however with different mathematical 
description (see (8), (9), (10) and (11)). Exotic identification 
is partially similar to the original one. Based on all data 
analysis, it can be stated that a) exact form of logistic 
equation has been synthesized 32 times (see Table 6).  
Number of synthesized similar systems was 79. For general 
overview see Table 7. 

Used algorithms and experiment settings. All algorithms 
has been initialized so that a) population size remained the 
same, b) cost function evaluations was similar amongst 
algorithms as much as possible. The first “condition” has not 
been followed for algorithms S3 and S4 compared to S1 and 
S2 (see Table 3). It is caused by different internal algorithm 
structure for new individuals calculations. Due to this fact 
condition b) has been kept with highest priority. 

Behaviour preciseness. It should be noted here that 
identification has not been focused on exact behaviour 
identification for each time development of logistic equation, 
but on similarity of behaviour via data used later for 
bifurcation diagrams. Despite the fact that some of them were 
precisely estimated, it is our duty to say that sometimes, very 
rarely and only for special setting of parameter A, were 
trajectories of synthesized systems running to infinity. To 
avoid this “side effect” the above-mentioned cost function 
should contain in future a penalization for such kinds of 
effects. From Fig. 4, it is also visible that a little bit longer 
time is needed to better estimation of system description. For 
some identified systems it has been observed that while for A 
∈ [3, 4] behavior identical or very similar with of logistic 
equation was produced, whereas other values of A (for 
example negative) other chaotic behavior were generated, see 
for example  -A + (-(1/A) + A/x - 2 x) x + (A - x) x with A ∈ 
[0, 1] 

Problem complexity and algorithm performance. Based 
on the fact that individual can consist of 50 symbolic 
elements, there are 3.04 × 1064 possible combinations of 
synthesized structures – systems, including senseless 
combinations. This is of course only the theoretical number, 
because some combinations will be avoided due to process of 
synthesis (only mathematically acceptable {functions with 
appropriate number of arguments, …} structures  are 
synthesized). However, in layman’s terms, it can be stated 
that all 111 synthesized solutions (from 500 in total) 
represents 3.64 × 10-61 % of such defined searched space. If 
we will follow maximal allowed number of cost function 
evaluations (see Table 3 + Table 4 = 410 208 cost function 
evaluations, i.e. tested solutions) then evolutions searched 
maximally 1.34 × 10-57 % of the search space. Lets take a 
simplified time point of view. When for example MacBook, 
2.33 MHz Intel Core Duo with 3 GB RAM is used, then one 
cost function evaluation needs (if we omit time needed for 
formula synthesis) approx. 0.3659 s. Then to evaluate all 
possible combinations by simple enumeration would take 
approx. 3.52 × 1056  years. This is 2.35 × 1046 longer than our 
universe exist. All those numbers clearly shows that EAs are 
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powerful enough to handle such tasks and obtained results are 
not simply a matter of randomness.  

Other evolutionary techniques. In this paper, the so-called 
analytic programming has been used, however we have to say 
that another and more well known techniques like genetic 
programming, see Koza (1998), Koza et al. (1999) or 
grammatical evolution, see O'Neill and Ryan (2002), should 
give similar results as reported here.   

In conclusion, it has to be stated that, a) EAs use on chaos 
identification is a promising direction of research; b) to 
increase the number of successful identifications (see Table 6 
and Table 7) the cost function or/and algorithm settings 
should be improved. Also, more extensive set of simulations 
based on more rich set of evolutionary algorithms and chaotic 
systems is needed – which is now in process at Tomas Bata 
University in Zlin. 
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