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Abstract. One of the new emerging application strategies for optimization is the hybridization of existing meta-
heuristics. The research combines the unique paradigms of solution space sampling of SOMA and memory retention 
capabilities of Scatter Search for the task of capacitated vehicle routing problem. The new hybrid heuristic is tested 
on the Taillard sets and obtains good results.  
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INTRODUCTION  

Metaheuristics are algorithms, which are used for 
the optimization of complex systems. The vital 
attribute for these heuristics is that they have to 
operate without apriori information of the system.  

Metaheuristics operate on two ideological 
frameworks, firstly that a group of solutions provide 
a better platform to find optimal solution, and 
secondly that certain guiding concept leads the 
solutions towards the optimal solution, or nearby 
regions.  

A number of different transformation concepts 
have evolved within the scope of Metaheuristics [1].  

Ant Colony (ACO), Genetic Algorithms (GA), 
Differential Evolution (DE), Particle Swarm 
Optimization (PSO) and Self Organising Migration 
Algorithm (SOMA) are some of the most potent 
heuristics available. Most of these algorithms have 
mimicked naturally occurring phenomena. 

One of the recent advancements is the 
hybridization of different algorithms in order to 
merge their unique methodology under one platform.  

Two promising algorithms, which have a proven 
track record but based on different philosophy, are 
Scatter Search (SS) and SOMA. SS is based on the 
memory adaptive paradigm whereas SOMA is on a 
swarm paradigm. This research is centered on the 

merging of these unique paradigms in a single 
framework of a hybrid Discrete SOMA – SS 
(DSOMA-SS). 

The paper is organized as follows. Section 2 
introduces SOMA, whereas SS is described in 
Section 3. The hybrid framework is given in Section 
4. Section 5 outlines the vehicle routing problem after 
which Section 6 presents the results which is 
analyzed in Section 7. 

 

SELF ORGANISING MIGRATING 
ALGORITHM 

SOMA [2], is based on the competitive-
cooperative behavior of intelligent creatures solving a 
common problem. 
In SOMA, individual solutions reside in the 
optimized model’s hyperspace, looking for the best 
solution. It can be said, that this kind of behavior of 
intelligent individuals allows SOMA to realize very 
successful searches. 

Because SOMA uses the philosophy of 
competition and cooperation, the variants of SOMA 
are called strategies. They differ in the way as to how 
the individuals affect all others. The best operating 
strategy is called 'AllToAll' and consists of the 
following steps:  
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1. Definition of parameters. Before execution, 
the SOMA parameters (PathLength, Step, 
PRT, Migrations see Table 1) are defined.  

2. Creating of population. The population SP 
is created and subdivided into clusters.  

3. Migration loop.   
a. Each individual is evaluated by the cost 

function  
b. For each individual the PRT Vector is 

created.  
c. All individuals, perform their run 

towards the randomly selected solution 
in the opposing cluster according to 
Equation 2. Each solution is selected 
from individual cluster piecewise. The 
movement consists of jumps determined 
by the Step parameter until the individual 
reaches the final position given by the 
PathLength parameter. For each step, the 
cost function for the actual position is 
evaluated and the best value is saved. 
Then, the individual returns to the 
position, where it found the best-cost 
value on its trajectory.   

 

The schematic of SOMA with clustered 
population is given in Figure 1. SOMA, like other 
evolutionary algorithms, is controlled by a number of 
parameters, which are predefined. They are presented 
in Table 1. 
 

 
 

FIGURE 1. SOMA migration utilizing clustered 
population 

 
 

TABLE 1. SOMA Parameters  
Name Range Type 
PathLength (1.1 - 3) Control 
StepSize (0.11 - PathLength) Control 
PRT (0 - 1) Control 

 
Mutation 

Mutation, the random perturbation of individuals, 
is applied differently in SOMA compared with other 
ES strategies. SOMA uses a parameter called PRT to 
achieve perturbation. It is defined in the range [0, 1] 
and is used to create a perturbation vector (PRT 
Vector) as follows: 
 
if rnd j < PRTVectorj = 1

else    0, j = 1,...,nparam

 (1) 

 
The novelty of this approach is that the PRT 

Vector is created before an individual starts its 
journey over the search space. The PRT Vector 
defines the final movement of an active individual in 
search space. 

The randomly generated binary perturbation 
vector controls the allowed dimensions for an 
individual. If an element of the perturbation vector is 
set to zero, then the individual is not allowed to 
change its position in the corresponding dimension. 

Crossover 

In standard metaheuristics, the Crossover operator 
usually creates new individuals based on information 
from the previous generation. Geometrically 
speaking, new positions are selected from an N 
dimensional hyper-plane. In SOMA, which is based 
on the simulation of cooperative behaviour of 
intelligent beings, sequences of new positions in the 
N-dimensional hyperplane are generated. The 
movement of an individual is thus given as follows: 

 
�
r =

�
r0 +

�
mtP

�
RTVector  (2) 

where: �
r : new candidate solution �
r0 : original individual 

m: difference between leader and start position of 
individual  
t: ∈[0, PathLength] 
PRTVector: control vector for perturbation 
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It can be observed from Equation 2, that the PRT 
vector causes an individual to move toward the 
leading individual (the one with the best fitness) in 
N–k dimensional space. If all N elements of the PRT 
vector are set to 1, then the search process is carried 
out in an N dimensional hyperplane (i.e. on a N+1 
fitness landscape). If some elements of the PRT 
vector are set to 0 then the second terms on the right-
hand side of Equation (2) equals 0. This means that 
the number of frozen parameters, k, is simply the 
number of dimensions that are not taking part in the 
actual search process. 

For each individual, once the final placement is 
obtained, the values are re-converted into integer 
format through rounding and repairement process. 

SCATTER SEARCH 

SS is an evolutionary method initially proposed 
by [3] in the 1960s for combining decision rules and 
problem constraints. SS encompasses the principles 
that underlie the surrogate constraint design. It is 
devised to (1) capture information about the solutions 
not contained within, (2) use auxiliary heuristics to 
generate better solutions from the current solutions. 

The basic template of SS routines is given as: 
1. A Diversification Generator: to generate 

a diverse population from a trial 
solution or a seed solution 

2. An Improvement Method: to transform 
a trial solution into an enhanced 
solution 

3. A Reference Set Update Method: to build 
and maintain a Reference Set consisting of b 
solutions, where half the solutions are best 
and the other half diverse. 

4. A Subset Generation Method: to operate on 
the reference set, to produce a subset of its 
solutions as a basis for creating combined 
solutions. 

5. A Solution Combination Method: to 
transform a given subset of solutions 
produced by the above routine into a 
combined solution. 

The diversification generator generates the 
population from the initial solution, which is supplied 
as seed or using random generation. The main 
attribute is that there is replication of solutions within 
the population; each solution is unique. This is useful 
since having a diverse population will also have more 
solutions within the solution space instead of multiple 
solutions occupying the same space. Using the 
permutation generator in [3], the population is 
generated permutatively from the single seed 
solution. 

The improvement routine in SS is an integral part 
of the heuristic. Each solution generated is improved 
using either a surrogate heuristic like tabu search 
(TS) or an improvement routine like 2 – OPT local 
search.  

The reference set or refset is a select group of 
solutions that are isolated from the main population 
for manipulation by the SS heuristic. Unlike other 
evolutionary heuristics, SS does not operate on the 
complete population, but rather on a select group of 
solutions. This group of solutions is selected based on 
two criteria; 

1. Intensified Solutions: solutions, which have 
the “best” objective values in the population. 

2. Diversified Solutions: solutions, which have 
the “farthest” objective functions from the 
intensified solutions. 

These two criteria are collectively known as 
memory adaptive programming (MAP) [3]. MAP is 
currently regarded as the critical factor in 
evolutionary heuristics. The ability to recognize the 
path and facilitate movement towards the global 
minima is highly desirable. For the refset build 
routine in SS, initially the first half is selected on the 
basis of their objective functions. The other half is 
selected on the min-max criteria given by [4]. These 
solutions are the furthest away from the “best” 
solutions. 

The subset generation method is utilized for the 
combination of the solutions in the refset. [5] outlined 
a two-point crossover for genetic algorithms. The 
solution combination method in SS was modified to 
use this approach. Taking two solutions, two 
crossover points are isolated as the values in between 
the regions are swapped with each other. The 
resulting solution is checked for repetition, and if 
repetition is detected, a new unique value is 
generated in its place. This solution is checked 
against the worst performing solution in the refset, 
and if there is improvement, then the solution is 
replaced in refset. This operation iterates throughout 
the refset solutions, till as specified cutoff limit is 
reached. If during one iteration, no improvement is 
seen in the refset, the refset is considered stagnated 
and taking the best performing solution as seed a new 
population is generated according to the 
diversification generator. 

HYBRID DISCRETE SELF 
ORGANISING MIGRATING 

ALGORITHM – SCATTER SEARCH 

Hybrid DSOMA-SS is the hybrid variant of 
DSOMA, which utilizes the refset structure of SS in 
order to enhance the population propagation in 
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DSOMA. This algorithm has been developed to solve 
permutation based combinatorial optimization 
problem. The same ideology of the sampling of the 
space between two individuals is retained. The 
generic outline is given as: 

1. The Population is initialized and the 
fitness of all the solutions is evaluated. 

2. Based on the refset size b, half the 
solutions are selected based on the 
fitness. 

3. The other half of the refset solutions is 
selected based on the min-max criteria 
[4].  

4. The jump sequence is calculated on the 
refset. 

5. After each migration, the best solution 
is updated to the refset.  

Initialization 

The initial population is initialized as a 
permutative schedule representative of the size of the 
problem at hand. Each element within the individual 
is unique. 
 

P ⊇ Xi
t
⊇ xi , j

t
=

1+ rand ( ) ⋅ IS −1( )

if   xi, j
t
∉ xi,1

t ,.., xi, j−1
t{ }

�
�
�

��
 

Reference Set Selection 

Based on the fitness evaluation, the best refset/2 
solutions are accepted from the population. Based on 
the min-max criteria from [4], the most diverse 
solutions are accepted in the refset. The refset is now 
the operational population. 
 

Jump Sequences 

DSOMA operates by calculating the number of 
discrete jump steps that each individual has to 
circumnavigate. In 
DSOMA, the parameter minimum jumps (Jmin) is 
used in lieu of PathLength, which states the minimum 
number of individuals or sampling between the two 
individuals. Taking two individuals in the refset, one 

as the incumbent Xi
t( )and the other as the leader 

XL
t( ) , the possible number of jump solutions Jmax is 

the mode of the difference between the adjacent 
values of the elements in the individual (3).  

J = xi, j
t−1
− xL , j

t−1{ }
Jmax = mode J[ ]

 (3) 

 

The step size (s) can now be calculated as the 
integer fraction between the required jumps and 
possible jumps. The jump matrix J, which contains 
all the possible jump positions, can be calculated as: 
 

 

J j ,l
P
=

xi , j
t−1
+ sl   if xi , j

t−1
+ sl < xL , j

t−1

               and xi, j
t−1
< xL , j

t−1;

xi , j
t−1
− sl   if xi , j

t−1
− sl < xL , j

t−1

               and xi, j
t−1
> xL , j

t−1;

0             otherwise

�

�

�
�
�

�

�
�
�

j = 1,..., IS;  l = 1,.., Jmin

 (4) 

New Jump Individual Selection 

A total of Jmin new individuals can now be constructed 
from the jump positions. Each new individual Yw

t

, 
where w = 1,..., Jmin  is constructed piecewise from 
the jump matrix J . Each element yw

t

 
in the 

individual, indexes its values from the corresponding 
jth array in the jump matrix Ji, j

P

.
Each l th

l = 1..., Jmin( )position for a specific 
j th j = 1..., IS( )element is sequentially checked to 

ascertain if it already exists in the current individual
Yw

t .If this is a new element, it is then accepted in the 
individual, and the corresponding l th

value in the 
jump matrix is set to zero Ji , j

P
= 0.This iterative 

procedure can be given as in (5). 
 

 

Yw, j
t
=

J j ,l
P

if J j ,l
P
∉ yw,1

t ,..., yw, j−1
t{ }

   and J j ,l
P
≠ 0;l = 1,.., Jmin

then J j ,l
P
= 0

�

�
��

�
�
�

0             otherwise

�

�

�
��

�

�
�
�

w = 1,.., Jmin

 (5) 

RefSet Update 

After each individual is evaluated for its fitness value 
as in (6). 

347



Cw
t
= f Yw

t( );w = 1,.., Jmin  (6) 

 
2-OPT local search is applied to the best 

individual obtained with the minimum fitness value. 
After the local search routine, the new individual is 
compared with the fitness of the incumbent 
individual, and if it improves on the fitness, then the 
new individual is accepted in the population (7). 

 

Xi
t
=

Ybest
t   if f Ybest

t( ) <Ci
t−1

Xi
t−1   otherwise

�
�
�

��
 (7) 

Iteration 

Sequentially, each individual Xi+1
t−1 is selected 

from the refset, and it begins its own sampling 

towards the designated leader XL
t−1. It should be 

noted that the leader does not change during the 
evaluation of one migration. 

Repairement Procedure 

The repairment process [6] is given in a number 
of routines. The first routine is to check the entire 
solution for repeated values. These repeated values 
and their positions are isolated in a replicated array 

xrepl = x j , xj+n ,..., x{ } . The second routine is to 

find which values are missing from the solutions 

given as xmis = 1,..,n{ }∩ x1, x2,..., xn{ } .  

Since, the replicated array contains a number of 
sequences of replicated solutions, randomly one 
solution in each sequence is labeled as feasible and 
repatriated back into the main solution. This leaves 
the replicated array containing only infeasible values.   

Randomly each value is selected from the missing 
array and inserted in the position of a replicated value 

in the replicated array  xmis →
random

xrepl .  

Finally, the replicated array is reinserted in the 
solution array with all values now feasible 

xrepl → x . 

Iteration 

When all the individuals have completed their run 
towards the leader, the refset is evaluated for its 
viability. If during the last migration, no new solution 
was obtained, a new population is generated with the 

best solution from the current refset included, and the 
refset genereated from the new population.  

If a new solution was obtained during the 
migration, the migration continues with the current 
refset, till the termination criteria is reached. 

CAPACITATED VEHICLE ROUTING 
PROBLEM 

The Vehicle Routing Problem (VRP) introduced 
for the first time by [7] is a complex combinatorial 
optimization problem, which can be seen as a merge 
of two well-known problems: the Traveling 
Salesperson Problem (TSP) and the Bin Packing 
Problem (BPP). 

It can simply be described as follows: given a 
fleet of vehicles with uniform capacity, a common 
depot, and several costumer demands, find the set of 
routes with overall minimum route cost which service 
all the demands. 

Assume a quantity di of a single commodity 
which is to be delivered to each customer 

i ∈N = 1,...,n{ }from a central depot {0} using k 

independent delivery vehicles of identical capacity C. 
Delivery is to be accomplished at minimum total 
cost, with ci, j ≥ 0denoting the transit cost from i to 

j, for 0 � i, j � n. The cost structure is assumed 
symmetric, i.e., ci, j = cj ,i  and cj ,i = 0 . 

Combinatorially, a solution for this problem 

consists of a partition of N into k routes R1,.., Rk{ } , 

each satisfying dj ≤C
j∈Ri

� , and a corresponding 

permutation σ i  of each route specifying the service 

ordering. This problem is naturally associated with 
the complete undirected graph consisting of nodes 

N ∪ 0{ } , edges E, and edge-traversal costs

ci, j i, j{ } ∈E . In this graph, a solution is the union 

of k cycles whose only intersection is the depot node. 
Each cycle corresponds to the route serviced by one 
of the k vehicles. By associating a binary variable 
with each edge in the graph, the following integer 
programming formulation is obtained: 

 

xe = 2k
e= 0, j{ }∈E

min cexe
e∈E
�

�  (8) 

 

xe = 2∀i ∈N
e= 0, j{ }∈E
�  (9) 
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xe = 2b S( )∀S ⊂ N , S
e= 0, j{ }∈E ,
i∈S , j∉S

�  (10) 

 

0 ≤ xe ≤1∀e = i, j{ } ∈E,i, j ≠ 0  (11) 

 

0 ≤ xe ≤1∀e = i, j{ } ∈E  (12) 

 

xe  integral ∀e∈E  (13) 

 

For ease of computation,  is 
defined as an obvious lower C bound on the number 
of trucks needed to service the customers in set S. 
Constraints 8 and 9 are the degree constraints. 
Constraints 10 is a generalization of the subtour 
elimination constraints from the TSP and serves to 
enforce the connectivity of the solution, as well as to 
ensure that no route has total demand exceeding the 
capacity C. A (possibly) stronger inequality may be 
obtained by computing the solution to a Bin Packing 
Problem (BPP) with the customer demands in set S 
being packed into bins of size C. Equation 10 is the 
capacity constraints. 

It is clear from the description that the VRP is 
closely related to two difficult combinatorial 
problems. By setting C = �, the Multiple Traveling 
Salesman Problem (MTSP) is obtained. An MTSP 
instance can be transformed into an equivalent TSP 
instance by adjoining to the graph k − 1 additional 
copies of node 0 and its incident edges (there are no 
edges among the k depot nodes). On the other hand, 
the question of whether there exists a feasible 
solution for a given instance of the VRP is an 
instance of the BPP. The decision version of this 
problem is conceptually equivalent to a VRP model 
in which all edge costs are taken to be zero (so that 
all feasible solutions have the same cost). Hence, the 
first transformation can be seen as the relaxing the 
underlying packing (BPP) structure and the second 
transformation as relaxing the underlying routing 
(TSP) structure. A feasible solution to the full 
problem is a TSP tour (in the expanded graph) that 
also satisfies the packing constraints (i.e., that the 
total demand along each of the k segments joining 
successive copies of the depot does not exceed C). 

Because of the interplay between the two 
underlying models, instances of the Vehicle Routing 
Problem can be extremely difficult to solve in 
practice. In fact, the largest solvable instances of the 
VRP are two orders of magnitude smaller than those 
of the TSP. Exact solution of the VRP thus presents 

an interesting challenge. 

RESULTS 

A total of 12 problems of the Taillard sets have 
been experimented. Three different sets exist of four 
instances of size 75, 100 and 150. The results of 
HDSOMA-SS is given in Tables 3 - 5. The bolded 
values are the best results for that particular instance. 
The average and standard deviation values are also 
provided. The t-test values for the different data sets 
are given in Table 6. 

The operating parameters of DSOMA-SS are 
given in Table 2.  
 

 
TABLE 3.  VRP 75 tour result 

Instant n Optimal DSOMA Hybrid 

tai75a 75 1618.36 0.928 0.621 
tai75b 75 1344.62 0.754 0.532 
tai75c 75 1291.01 1.181 0.721 
tai75d 75 1365.24 0.950 0.652 
Average   1.064 0.631 
StdDev   0.122 0.067 
 

TABLE 3.  VRP 100 tour result 
Instant n Optimal DSOMA Hybrid 

tai100a 100 2401.34 1.144 0.976 
tai100b 100 1940.61 1.467 1.143 
tai100c 100 1406.2 1.414 0.932 
tai100d 100 1581.25 1.459 1.092 
Average   1.371 1.035 
StdDev   0.152 0.085 
 

TABLE 3.  VRP 150 tour result 
Instant n Optimal DSOMA Hybrid 

tai150a 150 3055.23 1.772 1.432 
tai150b 150 2656.47 2.217 1.843 
tai150c 150 2341.84 1.962 1.532 
tai150d 150 2645.39 1.743 1.342 
Average   1.924 1.537 
StdDev   0.218 0.188 
 

TABLE 3.  VRP 75 tour result 
Instant t-value p-value significant algorithm 
tai50 6.4517 0.0076 yes Hybrid 
tai100 5.1606 0.0141 yes Hybrid 
tai150 20.123 0.0003 yes Hybrid 

b S( ) =
i∈S di�( )
C

�

�
�
�

	








TABLE 2.  DSOMA-SS operating parameters 
Parameter Value 

Strategy All-to-One 
Population 100 
Refset size 20 
Migration 50 
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ANALYSIS AND CONCLUSION 

The comparison of the new hybrid algorithm was 
done with the previous experiment done by DSOMA. 
In each of the experimentations, the new hybrid 
algorithm improved on the previous algorithm.  

The t-test results conducted on the two algorithms 
validate the claim that HDSOMA-SS is a valid and 
significant improvement on DSOMA.  

Further improvements will include the tuning of 
this hybrid algorithm and more application in other 
logistical problem domains.  
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