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Abstract: - The article deals with recursive estimation algorithms realized in Matlab&Simulink development 
environment. These algorithms are realized as a blocks in simple SIMULINK library. Proposed library can be 
used for recursive parameter estimation of linear dynamic models ARX, ARMAX and OE. The library 
implements several recursive estimation methods: Least Squares Method, Recursive Leaky Incremental 
Estimation, Damped Least Squares, Adaptive Control with Selective Memory, Instrumental Variable Method, 
Extended Least Squares Method, Prediction Error Method and Extended Instrumental Variable Method. 
Several forgetting factor and modification of basic algorithm are taken into consideration in order to cope with 
tracking the time-variant parameters.  
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1 Introduction 
The field of system identification uses statistical 
methods to build mathematical models of dynamical 
systems from measured data. A dynamical 
mathematical model in this context is a 
mathematical description of the dynamic behavior 
of a system or process in either the time or 
frequency domain. There exist many complex 
packages for system identification purposes in 
MATLAB and SIMULINK environment. These 
toolboxes provide solution to wide range of the 
problems from the area of system identification, e.g. 
System Identification Toolbox [11] and Continuous 
Identification Toolbox [6]. 

There also exist many special-purpose programs 
and libraries for MATLAB and SIMULINK, e.g. 
Idtool [3]. These simple tools provide solution to 
specific problems from the concrete part of the area 
of system identification. The proposed Recursive 
Identification Algorithms Library (RIA) fall into 
category of simple libraries for SIMULINK 
environment and is designed for recursive 
estimation of the parameters of the linear dynamic 
models ARX, ARMAX and OE. The Recursive 
Identification Algorithms Library consists of several 
user-defined blocks. These blocks implement 
several recursive identification algorithms: Least 

Squares Method (RLS) and its modifications, 
Recursive Leaky Incremental Estimation (RLIE), 
Damped Least Squares (DLS), Adaptive Control with 
Selective Memory (ACSM), Instrumental Variable 
Method (RIV), Extended Least Squares Method 
(ERLS), Prediction Error Method (RPEM) and 
Extended Instrumental Variable Method (ERIV). 
The Recursive Identification Algorithms Library 
can be used for simulation or real-time experiment 
(e.g. Real Time Toolbox) in educational process 
when it is possible to demonstrate the properties and 
behavior of the recursive identification algorithms 
and forgetting factors under various conditions and 
can be also used in the identification part of self-
tuning controllers. 
 
 
2 Model structure 
The basic step in identification procedure is the 
choice of suitable type of the model. General linear 
model takes the following form: 
 

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
1 1

1 1 1 1

B q C q
y k u k n k

A q F q A q D q

− −

− − − −
= +  (1) 
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 (2) 

are shift operator polynomials and ( )y k , ( )u k  
are output and input signals. White noise ( )n k  is 
assumed to have zero mean value and constant 
variance. 

All linear models can be derived from general 
linear model by simplification. In the Recursive 
Identification Library following linear dynamic 
models are taken into consideration. These are 
ARX, ARMAX, OE models. 

 
ARX model (C=D=F=1): 
 

( ) ( )
( ) ( ) ( ) ( )

1

1 1

1B q
y k u k n k

A q A q

−

− −
= +  (3) 

 
ARMAX model (D=F=1): 
 

( ) ( )
( ) ( ) ( )

( ) ( )
1 1

1 1

B q C q
y k u k n k

A q A q

− −

− −
= +  (4) 

 
OE model (A=C=D=1): 
 

( ) ( )
( ) ( ) ( )

1

1

B q
y k u k n k

F q

−

−
= +  (5) 

 
 
3 Recursive Parameter Estimation 
The recursive parameter estimation algorithms are 
based on the data analysis of the input and output 
signals from the process to be identified. Many 
recursive identification algorithms were proposed 
[4, 5]. In this part several recursive algorithms with 
forgetting factors implemented in Recursive 
Identification Algorithms Library are briefly 
summarized. 
 
 
3.1 RLS 
This method can be used for parameter estimate of 
ARX model. The algorithm can be written in 
following form: 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
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−
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C

Θ Θ L

C C L C

φ

φ
φ φ

φ

 (6) 

 
where: ( )kL  denote gain matrix, ( )kC  is the 

covariance matrix of the estimated parameters, 
( )ˆ kΘ  is the vector that contains the estimated 

parameters and ( )kφ  is the data or regression vector 
 

( ) [ ]1 1
ˆ , , , , T

na nbk a a b b=Θ … …  (7) 
 
( ) ( ) ( )

( ) ( )
1 , , ,

1 , ,

T k y k y k na

u k u k nb

= − −⎡⎣
− − ⎤⎦

…

…

φ
 (8) 

 
This RLS algorithm assumes that the parameters 

of the model process are constant. In many cases, 
however, the estimator will be required to track 
changes in a set of parameters. To cope with 
tracking the time-variant parameters some 
adjustment mechanism must be introduced in the 
previous basic equations. Several implementations 
have been proposed [4, 9, 10, 16]. 
 
3.1.1 RLS with exponential forgetting 
Covariance matrix is given by 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 11 1
1

T

T

k k k k
k k

k k k
⎛ ⎞− −

= − −⎜ ⎟⎜ ⎟+ −⎝ ⎠

C C
C C

Cλ λ
φ φ

φ φ
 (9) 

 
where 10 << λ  is forgetting factor. 
The algorithm is convenient for identification 

and adaptive control of slowly varying systems. 
This method has the main disadvantages that when 
the inputs is not persistent, and as the old data is 
discarded in the estimation procedure, the matrix 

( )kC  increases exponentially with rate λ . This is 
called estimator wind-up. 

 
3.1.2 RLS with variable exponential forgetting 
The variable exponential forgetting is given by 
relation 

( ) ( )0 01 1k k= − + −λ λ λ λ  (10) 
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with ( ) 00 0,95; 0,99= ∈λ λ  
This algorithm is convenient for identification of 

time-invariant systems and self-tuning controllers. 
 
3.1.3 RLS with fixed directional forgetting 
To solve the problem of estimator wind-up, an 
estimator with directional forgetting can be used. 
This estimator forgets the information only in the 
directions in which new information is gathered and 
assures the convergence of the estimations and 
avoids large changes in the parameters. 

Covariance matrix is 
 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )1

1 1
1

1

T

T

k k k k
k k

k k k−

− −
= − −

+ −
C C

C C
Cε

φ φ
φ φ

 (11) 

 
and directional forgetting factor 
 

( ) ( ) ( ) ( )
11

1Tk
k k k

′−′− = −
−C

λε λ
φ φ

 (12) 

 
where λ′  can be chosen as in exponential 

forgetting algorithm. 
 

3.1.4 RLS with adaptive directional forgetting 
Detailed description of this algorithm can be found 
in [8]. 
 

( ) ( ) ( )
( )

1
1
k

k k
k

−
= −

−
ϕ

ε ϕ
ξ

 (13) 

 
where 
 

( ) ( ) ( ) ( )1 1Tk k k k− = −Cξ φ φ  (14) 
 

The value of adaptive directional forgetting 
factor is 

( ) ( ) ( )( ){
( )( ) ( )

( ) ( )
( )

( )

1

1 1 ln 1 1

1 1 1 1
1

1 1 1 1 1

k k

k k k
k k k

−

⎡ ⎤= + + + − +⎣ ⎦

⎫⎡ ⎤− + − − ⎪+ −⎢ ⎥ ⎬+ − + − + −⎢ ⎥ ⎪⎣ ⎦ ⎭

ϕ ρ ξ
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ξ η ξ

 (15) 

 
and 
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2
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ˆ 1
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e k
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λ
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 (16) 

 

3.1.5 RLS with exponential forgetting matrix 
This technique is able to cope with the cases where 
parameters have distinct rates of change in time. 
Here, is described a recursive estimation algorithm 
with exponential forgetting matrix factors in order 
to provide distinct information discounts for each 
parameter. The RLS with exponential forgetting 
matrix is governed by the following equations [10]: 
 

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1

1
1 1

1
1

1 1

T

T

T

T

k k

k k
L k

k k k

k k k
k k

k k k

− = −

−
=

+ −

⎛ ⎞−
= − −⎜ ⎟⎜ ⎟+ −⎝ ⎠

C

C I

Λ Ω Ω

Λ
Λ

Λ
Λ

Λ

φ
φ φ

φ φ
φ φ

 (17) 

 
with 

 

1

1

1 0 0

0 0
10 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

%
λ

Ω

λ

 (18) 

 
representing a matrix with diagonal elements 

equal to square roots of the forgetting factors 
associated to each column of the regression vector 
φ . 
 
3.1.6 RLS with constant trace algorithm 
Constant trace algorithm could also be used to keep 
the matrix ( )kC  limited; by scaling the matrix at 
each iteration in a way that trace of ( )kC  is 
constant. The regularized constant-trace algorithm is 
given by the following equations: 
 

( ) ( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ1 1Tk k k y k k k= − + − −Θ Θ L Θφ  (19) 

( ) ( ) ( )
( ) ( ) ( )

1
1T

k k
k

k k k
−

=
+ −
C

L
Cλ

φ
φ φ

 (20) 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 11 1
1 1

T

T

k k k k
k k

k k k
⎛ ⎞− −

= − −⎜ ⎟⎜ ⎟+ −⎝ ⎠

C C
C C

Cλ
φ φ

φ φ
 (21) 

( ) ( )
( )( )1 2

k
k c c

tr k
= +

C
C I

C
 (22) 

in which 1c  and 2c  have positive values given 
by, 

1

2

10000,
c
c

=  ( ) ( ) 1 1T k k c �φ φ  (23) 
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3.1.7 Exponential Forgetting and Resetting 
Algorithm 
This modification of RLS places upper and lower 
bounds on the trace of the covariance matrix while 
maintaining a robustly valued forgetting factor. The 
algorithm takes the following form: 
 

( ) ( ) ( ) ( )ˆ ˆ ˆ1k k k e k= − +Θ Θ Lα  (24) 

( ) ( ) ( )
( ) ( ) ( )

1
1T

k k
k

k k k
−

=
+ −
C

L
Cλ

φ
φ φ

 (25) 

( ) ( ) ( ) ( ) ( )

( )2

1 1 1

1

Tk C k k k C k

C k
λ

β γ

⎡ ⎤= − − −⎣ ⎦

+ − −

φC L

I
 (26) 

( )min max1C k kσ σ≤ − ≤ ∀I I  (27) 

min max

min max

1, ,

0,5; 0,005; 0,95;
0,01; 10

−≈ ≈ + =
−

= = = =
= =

β η β λσ σ η
α η γ η λ

α β γ λ
σ σ

 (28) 

 
 
3.2 RWLS 
The recursive weighted least square [15] where the 
weighting data ( )kφ  is denoted as ( )q k  becomes 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ˆˆ 1

1

1

ˆ ˆ ˆ1

1 1

T

T

T

e k k k k

k k
k

k k k
q k

k k k e k

k k k k k

= − −

−
=

− +

= − +

= − − −

y Θ

C
L

C

Θ Θ L

C C L C

λ

φ

φ

φ φ

φ

 (29) 

 
where 0 1< <λ  is forgetting factor. 

 
 
3.3 RLIE 
With any parameter estimation algorithm, it is 
unavoidable that certain errors or noise will be 
present in the estimation loop. It can be shown when 
estimation algorithm contains an integrator in the 
estimation loop it may reduce its stability margin 
and accumulate the error effect, causing possible 
parameter estimate drift. To overcome this problem, 
it can be possible to modify the algorithm structure 
so that integral action is somewhat blunted. This can 
be achieved by introducing some leakage into the 
integration. 

The recursive leaky incremental estimation [18] 
can be describes as follows: 
 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

ˆ ˆ ˆ1

ˆ ˆ 1

ˆ ˆ1 1

1 11 1
1

Τ

Τ

Τ

k k k

k k

k k y k k k k

k k k k
k k

λ k k k

= − +

= − +

+ − − − −

⎛ ⎞− −
= − −⎜ ⎟⎜ ⎟+ −⎝ ⎠

Θ Θ Θ

Θ Θ

C Θ Θ

C C
C C

C

γ Γ

Γ Γ

γ Γ

λ

φ φ

φ φ
φ φ

(30) 

 
where Γ  denotes the stabilizing operator, 

defined as 11 −γ−=Γ q  and [ ]1,0∈γ  is the stabilizing 
parameter. This parameter is preselected by the user. 
 
 
3.4 ACSM 
Adaptive control with selective memory [7] updates 
parameter estimates only when there is new 
information present. The information increases and 
estimator eventually stops. The parameter estimates 
are updated only when the information matrix 
and/or estimated variance of the prediction error 
increases.  

The algorithm consists of several steps, 
equations (31) - (34): 

 
Step 0: Choose ( ) ( )0 00, 0 , 0 0,1r M> > < < ∞Θ C  

Set ( ) 1 1
0 0, 1 ,0 0

0 0
r r

M M
= > = − =σ ε . 

Step 1: 
 

( ) ( ) ( ) ( ){ }2ˆmax 1 1 1 , 0r k r k e k rσ σ= − + − −  (31) 

 
Step 2: Set ( ) 0B k =  and 

( )
( ) ( ) ( )

( )
1

1
0

0

T k k k
if

r kk

otherwise

A

−
≥

=

⎧
⎪⎪
⎨
⎪
⎪⎩

C
ε

φ φ

 (32) 

 
Step 3: If ( ) 0A k = , set 

 

( )
( ) ( )1 max1

0

if r k r k ii k
B k

otherwise

≥ −≤ ≤
=
⎧⎪
⎨
⎪⎩

 (33) 

Set ( ) ( ) ( )k A k B kΔ = +  
 

Step 4: 
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( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

ˆ ˆ 1

1
ˆ

1

1

1 1
1

Τ

Τ

Τ

k k

k k
k e k

r k k k k

k k

k k k k
k

r k k k k

Δ

Δ

= − +

−
+

+ −

= − −

− −
−

+ −

Θ Θ

C
C

C C

C C
C

φ
φ φ

φ φ
φ φ

 (34) 

 
Step 5: Set 1k k= +  and go to step 1 

 
 
3.5 ERIV 
This method ensures improved accuracy and greater 
speed of convergence than RIV. The method is 
based on choice of instruments vector which has 
more elements than there are parameters in the 
model to be estimated. Derivation of this algorithm 
can be found in [16]. Instruments can be chosen 
according to [2], [16]. 

The set of equations describe this algorithm 
 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1

ˆ ˆ ˆ1 1

1 1

1

1
1 0

1

1

1

1 1

T

T

T

T

T

T

T

k k k k k k

k k k k k k k

k k k

k k k

k k
k

k k
k

k

k k k k

k k k k

k k k k k

Λ

−

= − + − −

= − + −

= ⎡ ⎤⎣ ⎦

= −

⎡ ⎤−
= ⎢ ⎥
⎣ ⎦

⎡ ⎤−
= ⎢ ⎥
⎣ ⎦

= − +

= − +

= − − −

φ

φ

Θ Θ L ν Φ Θ

L P Φ Λ Φ P Φ

Φ w

w R z

z z

z r
v

y

R R z

r r z y

P P L Φ P

(35) 

 
 
3.6 RPEM 
The recursive prediction error method (RPEM) 
allows the online identification of all linear model 
structure. Since all model structure except ARX are 
nonlinearly parameterized, no exact recursive 
algorithm can exist; rather some approximations 
must be made [13]-[16]. In fact, the RPEM can be 
seen as a nonlinear least squares Gauss-Newton 
method. 

The Gauss-Newton technique is based on the 
approximation of the Hessian by the gradients. 

Thus, the RPEM requires the calculation of the 
gradient ( )kψ  of the model output with respect to 
its parameters: 

 

( ) ( )
( )

( )
( )

( )
( )

( )
( )1 2

ˆ ˆ ˆ ˆT

n

y k y k y k y k
k

k Θ k Θ k Θ k
⎡ ⎤∂ ∂ ∂ ∂

= = ⎢ ⎥∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
"ψ

Θ
(36) 

 
RPEM algorithm takes the form 
 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ˆˆ 1

1
1 1

ˆ ˆ ˆ1

1 1

T

T

T

e k y k k k

k k
k

k k k

k k k e k

k k k k k

= − −

−
=

+ −

= − +

= − − −

φ Θ

P ψ
L

ψ P ψ

Θ Θ L

P P L ψ P

 (37) 

 
where ( )kP  denotes covariance matrix. 
The model structure will influence the way in 

which the quantities ( )ê k  and ( )kψ  in the 
algorithm are computed from data and the 
previously computed parameter estimate. 
 
 
3.7 RELS 
This method is used for parameter estimations of 
ARMAX model. Formally it takes the same form as 
RLS. However, the regression and parameter vector 
are different. 

Parameter vector 
 

( ) [ ]1 1 1
ˆ , , , , , , , T

na nb nck a a b b c c= … … …Θ  (38) 
 
Regression vector 
 
( ) ( ) ( )

( ) ( )

( ) ( )

1 , , ,

1 , , ,

1 , ,

T k y k y k na

u k u k nb

k k nc

= − −⎡⎣

− −

− − ⎤⎦

…

…

…η η

φ

 (39) 

 
or 
 
( ) ( ) ( )

( ) ( )

( ) ( )

1 , , ,

1 , , ,

ˆ ˆ1 , ,

T k y k y k na

u k u k nb

e k e k nc

= − −⎡⎣

− −

− − ⎤⎦

…

…

…

φ

 (40) 
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where ( )kη  denotes the residual and ( )kê  is the 
prediction error. It usually speeds up the 
convergence of the RELS algorithm if the residuals 
(a posteriori) rather than the prediction errors (a 
priori) are used. 
 
 
3.8 DSL 
Damped least squares (DLS) algorithm is an 
extended version of the recursive simple least 
squares (RLS) algorithm [12]. The DSL algorithm is 
more appropriate for adaptive control, since it 
weights increments of estimated parameter vector 
(41). This gives more control on the adaptation rate. 

The DLS criterion is 
 

( )
( ) ( ) ( )

( ) ( ) ( )( )

2

2

ˆ
ˆ

ˆ ˆ 1

T
t

t k

k t N
d

y k k k
J

k k k

−

= −

⎛ ⎞⎡ ⎤− +⎜ ⎣ ⎦ ⎟
= ⎜ ⎟

⎡ ⎤⎜ ⎟+ − −⎣ ⎦⎝ ⎠

∑
Θ

Θ
Λ Θ Θ

λ
φ

 (41) 

 

The weighting matrix ( )d kΛ  is diagonal and 
weights the parameters variations. For an n-
parameters model, 

 
( ) ( ) ( ) ( )1 21d nk diag k k kα α α− = ⎡ ⎤⎣ ⎦…Λ  (42) 
 
A standard form of the DLS algorithm is given 
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ˆ ˆ1 2

1
1

1 1

1 1
1

1

1 1
1 1

1 1

1

T

d

Τ

Τ

Τ
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T
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−
=
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− ⎟⎟′+ − ⎠

′ ′= − −

′ ′ ′− −
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′ −
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C
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C
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C C
C
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C C
C
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C

λ

λ

λ
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α
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φ

φ
φ φ

φ φ
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( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( )

1

1

0

1
1 1

1 1

1

i i
T

i i i i

i i
i

k k
r k r k

k k

k k k
k

k

−

−

′ ′−
′ ′+ −

′ − = −

− −
′ =

C
C

C C

α
α

α λ α
α

λ  (43) 

 
 

where ir  are the succesive basic vectors, e.g. 

[ ]1..0 0 T
ir = "  

 
 
3.9 RIV 
It can be shown that if the process does not meet the 
noise assumption made by the ARX model, the 
parameters are estimated biased and non-consistent. 
This problem can be avoided using instrumental 
variable method. 

The algorithm takes the form 
 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ˆˆ 1

1

1 1

ˆ ˆ ˆ1

1 1

Te k k k k

k k
k

T k k k

k k k e k

Tk k k k k

= − −

−
=

+ −

= − +

= − − −

φ

φ

φ

y Θ

C z
L

C z

Θ Θ L

C C L C

 (44) 

 
where: ( )kL  denote gain matrix, ( )kC  is the 

covariance matrix of the estimated parameters, 
( )ˆ kΘ  is the vector that contains the estimated 

parameters, ( )kφ  is the data or regression vector, 

( )kz  is instrumental variable 
 

( ) [ ]1 1
ˆ , , , , T

na nbk a a b b= … …Θ  (45) 
 
( ) ( ) ( )

( ) ( )

1 , , ,

1 , ,

Τ k y k y k na

u k u k nb

= − −⎡⎣

− − ⎤⎦

…

…

φ
 (46) 

 
Choice of instrumental variable determines 

behaviour of the IV method in usage. Some 
common choices for generating instruments are 
proposed in [2, 16]. 

Typical choice of model independent 
instrumental variable is 

 
( ) ( ) ( )1 , ,

T
k u k u k na nb= − − −⎡ ⎤⎣ ⎦…z  (47) 
 
and model dependent instrument is 
 

( ) ( ) ( )
( ) ( )

1 , , ,

1 , ,

u u

T

z k y k y k na

u k u k nb

= − −⎡⎣

− − ⎤⎦

…

…
 (48) 
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where ( )1uy k −  is generated by calculating 
following difference equation with current 
parameter estimates 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

1

ˆ ˆ1

ˆ ˆ1

u nb

u na u

y k b k u k b k u k nb

a k y k a k y k na

= − + + − −

− − + + −

…

…
 (49) 

 
 
4 Recursive Identification 
Algorithms Library (RIA) 
The Recursive Identification Algorithm Library is 
realized in Matlab&Simulink environment. The 
proposed library is designed for recursive parameter 
estimation of linear dynamics model ARX, 
ARMAX, OE using recursive identification methods 
mentioned in previous chapters. 

 
Fig.1 Recursive identification Algorithms Library 

The Recursive Identification Algorithm Library 
is depicted in Fig.1. The Library consists of 18 user-
defined blocks and is designed for 
MATLAB&SIMULINK environment. Each block is 
realized as an s-function. 

Each block is masked by user-defined dialog. 
Several necessary input parameters should be input 
through this dialog. These are: type of forgetting 
factor and its value, degrees of polynomials, 
sampling period, initial values of parameter 
estimate, covariance matrix and data vector, etc. 
Each block also contains the help describes the 
meaning of each parameter, inputs and outputs and 
used recursive identification algorithms. Example of 
input dialog is shown in Fig.2. 

 
Fig.2 Input dialog of the identification block 
 

start/stop/restart

y

u

theta

y h

C

phi

ARX - RLS
 

Fig.3. Inputs/outputs of the identification block 
 
Input/output data from object under 

identification process are inputs to the identification 
block. Another input (start/stop/restart) is used for 
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control the identification algorithm. This input 
provides possibility of start, stop and restart the 
identification algorithm in selected instant of time. 
Outputs of the block are estimate of parameter 
vector, one-step prediction of output of model, 
covariance matrix and data vector. The inputs and 
outputs of the block are shown in Fig.3. 
 
 
4.1 Examples 
Using the recursive identification algorithms library 
is illustrated in two examples. The first example 
shows the simple application of the identification 
block in the model. Simulink diagram and the 
results are shown in Fig4. 

 
Fig.4 Example of application of identification 
block 

 
Second example shows application of recursive 

identification algorithms library in identification 
part of self-tuning controller. 

Several recursive identification algorithms 
mentioned above were tested in closed loop on 
system given by transfer function (50) with self-
tuning LQ controller. The controller is based on 
minimization of quadratic criterion with controller 
output signal penalization. The minimization of 
quadratic criterion is realized by spectral 
factorization. 

Continuous-time transfer function of the 
controlled system is 

 

( )

( )

2

2

1 , 1000
50 15 1

1,5 , 1000
50 15 1

sG s for t s
s s

sG s for t s
s s

+= ≤
+ +

+= ≥
+ +

 (50) 

The block diagram of controlled system is shown 
in Fig.5. It can be seen that the system output is 
directly influenced by non-measurable disturbance. 
This case is commonly fulfilled in practice. 
 

 
( )
( )qA
qB   

n(k) 

y(k) u(k) 

 
Fig.5 Block diagram of controlled system 
 

Discrete transfer function is then 
 

( )

( )

-1 -2
1

-1 -2

-1 -2
1

-1 -2

0.1529z 0.0287z , 250
1-1.1196 z 0.3012z

0.2072z 0.0651z , 250
1-1.1196 z 0.3012z 2

G z for k

G z for k

−

−

+= ≤
+

+= ≥
+

 (51) 

 
The sampling period was chosen 0 4T s= . 
The same initial conditions for system 

identification were used for all the types of recursive 
algorithms we tested. The initial parameter 
estimates were chosen to be 

for ARX, OE model 
 

( ) [ ]ˆ 0, 0, 0, 0 Tk =Θ  (52) 
 

for ARMAX model 
 

( ) [ ]ˆ 0, 0, 0, 0, 0, 0 Tk =Θ  (53) 
 
Estimation algorithms with fixed and variable 

exponential forgetting were applied using a 
forgetting factor ( )0 0.985λ λ= = . Forgetting factor 
for fixed directional forgetting was set to 0.985λ′ = . 
Initial values for adaptive forgetting were chosen to 
be ( ) ( ) ( ) ( )60 1, 0 0.99, 0 10 , 0 0.001ϕ ρ υ λ−= = = =  

System dynamics were described by ARX, OE, 
ARMAX model, respectively. Parameters of ARX 
model were identified by RLS, RIV and ERIV 
methods, RELS and RPEM methods were used to 
parameter estimation of ARMAX model and 
parameters of OE model were estimated by RPEM 
method. To assure parameters tracking the 
forgetting factors were used. Only parameters of 
deterministic part of the estimated models were 
utilized for controller synthesis. 
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4.1.1 Estimation of ARX model 
 
RLS with variable exponential forgetting 
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Fig.6 The adaptive control with LQ controller 
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Fig.7 Parameter estimates (solid line) computed 
with the RLS with variable exponential forgetting –
 true parameters (dashed line) 
 
RLS with adaptive directional forgetting 

From Fig.8 and Fig.9 can be seen that adaptive 
directional forgetting can improve control quality 
but there is fluctuation in parameters. 
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Fig.8 The adaptive control with LQ controller 

0 50 100 150 200 250 300 350 400 450 500
-1.5

-1

-0.5

0

0.5

1
a1
a2
b1
b2

 
Fig.9. Parameter estimates (solid line) computed 
with the RLS with adaptive directional forgetting –
 true parameters (dashed line) 

 
RIV with adaptive directional forgetting 

Fig.10 shows that the adaptive control with RIV 
method provide better results from system output 
point of view than adaptive control with RLS 
method. 

 
Fig.10. The adaptive control with LQ controller 

 
Fig.11. Parameter estimates (solid line) computed 
with the RIV with adaptive directional forgetting –
 true parameters (dashed line) 
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ERIV with fixed exponential forgetting 
Fig.13 shows that despite the fact that parameters 

are estimated correctly the adaptive controller does 
not provide appropriate output signal. From Fig.14 
can be seen that the speed of convergence is faster 
that in RLS but the estimator is not able to track 
changes in parameters. 
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Fig.12 The adaptive control with LQ controller 
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Fig.13 Parameter estimates (solid line) computed 
with the ERIV with fixed exponential forgetting -
 true parameters (dashed line) 
 
4.1.2 Estimation of ARMAX model 
RPEM-ARMAX with fixed exponential forgetting 
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Fig.14 The adaptive control with LQ controller 

 
Fig. 15 Parameter estimates (solid line) computed 
with the RPEM-ARMAX with fixed exponential 
forgetting – true parameters (dashed line) 
 

From step k=200 to k=270 the parameters 
estimates is maintained constant and in step k=270 
the restart of covariance matrix is made. This setting 
improves the adaptive controller behaviour. 

 
RELS with adaptive directional forgetting 
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Fig.16 The adaptive control with LQ controller 
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Fig.17 Parameter estimates (solid line) computed 
with the RELS with adaptive directional forgetting –
 true parameters (dashed line) 
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4.1.2 Estimation of OE model 
RPEM-OE with fixed exponential forgetting 
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Fig.18 Simulation results: the adaptive control with 
LQ controller 
 

From step k=200 to k=270 the parameters 
estimates is maintained constant and in step k=270 
the restart of covariance matrix is made. This setting 
improves the adaptive controller behaviour. 
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Fig.19 Parameter estimates (solid line) computed 
with the RPEM-OE with fixed exponential 
forgetting – true parameters (dashed line) 
 

Influence of each recursive algorithms on 
adaptive control performance were evaluated from 
quality control point of view. The results can be 
seen in Table 1. 

The criteria were defined 
 

2

1

2

2 1

1 ( );
1

k

y
k k

S e k
k k =

=
− + ∑  (54) 

2

1

2

2 1

1 ( )
1

k

u
k k

S u k
k k

Δ
=

=
− + ∑  (55) 

 
where ( )ke  denotes control error, ( )ku  is 

controller output and 1 21, 500k k= = . 

Table 1 Influence of recursive algorithm on adaptive 
control performance 
 

From Table 1 can be seen that the minimum of 
sum of squared control error and minimum of sum 
of squared difference of controller output signal 
were achieved by RIV method with adaptive 
directional forgetting for parameter estimate of 
ARX model. Other methods listed in Table 1 also 
provide satisfactory results except RLS with 
variable exponential forgetting. 

The results in Table 1 can be expressed in more 
transparent form. Fig.21 and Fig.22 show the 
control quality results in graphic form. 
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Fig.20 The criterion control quality Su in graphic 
representation 
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Fig.21 The criterion control quality Sy in graphic 
representation 
 
 
 

Methods Sy Sy 

RLS with VEF 0.0460 0.0429 

RLS with ADF 0.0054 0.0146 

ERIV with FEF 0.0404 0.0276 

RIV with ADF 0.0025 0.0126 

RPEM-ARMAX with FEF 0.0027 0.0205 

RELS with ADF 0.0058 0.0207 

RPEM-OE with FEF 0.0026 0.0294 
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5 Conclusion 
The Recursive Identification Algorithm Library is 
designed for recursive parameter estimation of 
linear dynamic model ARX, ARMAX, OE using 
recursive identification methods. The simple library 
can be used e.g. in identification part of self-tuning 
controller or in educational process when it is 
possible to demonstrate the properties and behavior 
of the recursive identification algorithms and 
forgetting factors under various conditions. 
Proposed library can be used not only in educational 
process to demonstrate the behavior and properties 
of recursive identification algorithms, but for 
example in connection with such Real Time 
Toolbox to identify in real time the parameters of 
the model of real systems. 
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