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Abstract: - The contribution is focused on a control design and simulation of multi input output (MIMO) linear 

continuous-time systems. Suitable and efficient tools for description and controller derivation are algebraic 

notions as rings, polynomial matrices, and Diophantine equations. The generalized MIMO PI controller design 

is studied for stable and unstable systems. A unified approach through matrix Diophantine equation can be 

applied in both cases. All stabilizing feedback controllers are obtained via solutions of a matrix Diophantine 

equation. The methodology allows defining scalar parameters (one or more) for tuning and influencing of 

controller parameters. A Matlab-Simulink program implementation was developed for simulation and 

verification of the studied approach. Illustrative examples show the effectiveness and flexibility of the proposed 

method for some simple MIMO systems. 
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1 Introduction 
The study of multi input–multi output (MIMO) 

systems has attracted scientific attention for 

decades. Analysis and control methods and tools 

have been developed in many monographs (e.g. [1], 

[2], [4], [8], [12], [14]) as well as in journal and 

conference contributions (e.g. [3], [9], [10], [16], 

[18]) or in program toolboxes, e.g. [17]. 

Multivariable systems represent an interesting 

research field also from mathematical point of view. 

Many notions, methods and tools of single input – 

output (SISO) systems cannot be simply and 

trivially generalized into multivariable cases. The 

main problem relates to the matrix non-commutative 

multiplication. However, many algebraic notions 

and tools can be successfully utilized also in the 

non-commutative case. The main tool for 

continuous- time systems is the Laplace transform 

and briefly speaking, multivariable linear 

continuous- time systems are described and 

expressed by a set of linear differential equations. 

So, scalar polynomials describing single input – 

output linear systems are replaced by polynomial 

matrices. Algebraic notions and modules remain a 

suitable and effective tool for analysis and control 

design of MIMO systems. Transfer functions as a 

ratio of two polynomials are in MIMO cases 

considered as matrix fractions and due to non-

commutative matrix multiplication the denominator 

can be in the left or right side of the matrix fraction 

([2], [8], [12]) in discrete and continuous-time case. 

Also, a scalar linear Diophantine equation is 

generalized into a matrix one, see e.g. [3], [14], 

[15]. The contribution is scheduled as follows. The 

basic notions are mentioned in section II, the system 

description of MIMO systems is introduced in 

section III. Section IV deals with matrix 

Diophantine equations and the next section outlines 

and summarizes a control design. Some first order 

examples and derivations are presented in section 

VI. The proposed methodology brings one or 

several scalar which can tune and influence the 

control behavior in an easy way. Simulations are 

presented in Section VII, the last section concludes 

the contents of the contribution. 

 

 

2 Polynomial Matrices 
Polynomial matrices are called l x m matrices where 

all elements of matrices are polynomials in an 

indeterminate s. This indeterminate can be 

considered in linear systems as the Laplace operator 

and the set of polynomial matrices is Rlm(s).  If l = 

m, then the set of polynomial matrices constitutes a 

non-commutative ring. A unit in this ring (an 

inverse element exists in the ring) is a matrix with 

real nonzero determinant and all units are called 

unimodular. Generally, l  m set Rlm(s) is no more a 

ring. If A = BC then B is a left divisor of A and A is 

a right multiple of B, while C is a right divisor of A 

and A is a left multiple of C. Similarly, greatest 

common left and right divisors are introduced. Two 

matrices A, B are left (right equivalent, if A = U1 B 

(A = B U2) with unimodular U1, U2. When A = U1 B 
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U2 then A, B are simply called equivalent. Matrices 

with the same number of columns are left coprime if 

their all left divisors are unimodular matrices and 

matrices with the same number of raw are right 

coprime if their all right divisors are unimodular 

ones. 

The known extended (scalar) Euclidean 

algorithm for can be generalized in multivariable 

cases. A greatest left common divisor G1(s) can be 

calculated for A, B with the same number of raw by 

 

1 1 1

1 1

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) 0,

A s P s B s Q s G s

A s R s B s S s

 

 
 (1) 

 

Moreover, L = AR1 = - BS1 is the least common 

right multiple of A, B. A greatest right common 

divisor G2(s) can be calculated for A, B with the 

same number of columns by 

 

2 2 2

2 2

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) 0,

P s A s Q s B s G s

R s A s S s B s

 

 
 (2) 

 

Also, L = R2A = - S2B is the left common 

multiple of A, B. Relations (1), (2) are the basic 

algebraic notions for Diophantine equations, see e.g. 

[1], [3], [10]. 

 

 

3 System Description 
A linear continuous-time multivariable (MIMO) 

system is described by a set of linear differential 

equations and then it can be easily expressed by the 

Laplace transform technique in the form 

 

( ) ( ) ( ) ( ),A s Y s B s U s  (3) 

 

where ( ), ( )A s B s  are polynomial matrices in the 

Laplace transform variable s. For control design, it 

is useful to characterize MIMO linear time-invariant 

systems in terms of their transfer function matrices. 

The generalization of single input-output linear 

system to MIMO ones is very simple in the state 

space description 

 

( ) ( ) ( ),

( ) ( ) ( )

x t Fx t u t

y t Hx t Lu t

  

 
 (4) 

 

The system with l inputs ad m outputs in (4) has 

the state vector x(t) with values in R
n
 and real 

matrices F, , H, L have dimensions (nxn), (nxl), 

(mxn), (mxm), respectively. Any decomposition 

 

 
1( ) ( )G s H sI F L    (5) 

 

defines a rational system´s transfer function matrix. 

A realization (5) is minimal when the state vector 

dimension n is as small as it can be and this value is 

called the MacMillan degree and it represents the 

order of the system. So, G(s) in (5) is a rational 

matrix function, it means that all entries are rational 

functions of s. This matrix function can be then 

expressed by the left or right matrix fraction 

 
1 1( ) ( ) ( ) ( ) ( )R RG s A s B s B s A s    (6) 

 

where A, B, AR, BR are polynomial matrices, more 

details can be found i.e. in [8].  Note, that both 

matrices A(s), AR(s) are squared but not necessarily 

of the same dimension. In the case of systems with l 

inputs and m outputs, the left denominator A(s) has 

dimension lxl, while the right denominator AR(s) has 

the dimension mxm. However, both matrices are 

associates and the characteristic polynomial 

following from the state-space description (4) is also 

associates. It means that all roots of the mentioned 

polynomials are same. It means 

 

det ( ) det ( ) det( )RA s A s sI F  (7) 

 

where F is the squared system matrix in (4). 

With relation (3) the notion of stability is closely 

connected. A linear system is asymptotic (internal 

stable), if all determinants in (3) are stable, for 

continuous-time systems it means that all roots lie in 

the open left half of the complex plane.  

 

 

4 Matrix Diophantine Equations 
Diophantine equations defined in commutative rings 

are linear equations of the form 

 

,a x b y c   (8) 

 

where a, b, c are known given entries and x, y are 

unknown ones in the ring. It is well known (see e.g. 

[1], [2], [8]) that equation (8) has a solution if and 

only if the greatest common divisor of a, b divides 

c, briefly gcd(a,b) / c. Moreover, if x0, y0 is a pair of 

particular solutions of (8) , then all x, y given by  

 

0 0

0 0

,

,

x x b t

y y a t

 

 
 (9) 
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where t is an arbitrary element of the ring and  

a0=a/gcd(a,b), b0=b/gcd(a,b).Then, without loss of 

generality, equation (8) can be supposed with 

coprime a, b and the solution of (8) exists for any c. 

The situation is more complex in non-

commutative rings, such is a set of polynomial 

matrices. Due to the non-commutativity of matrix 

multiplication, equation (8) is split into three kinds 

of linear matrix equations over the ring. A natural 

generalization of this equation is either the equation 

 

 
1 1 1,A X BY C   (10) 

 

or the equation 

 

2 2 2 ,XA YB C   (11) 

 

Both equations are called unilateral ones. The 

last equation is called a bilateral one and it has the 

form 

 

3 3 3,A X YB C   (12) 

In the case of equation (10), matrices (A1, B1, C1) 

have the same number of rows, while in equation 

(11) matrices in the triple (A2, B2, C2) have the same 

number of columns. The solvability of equations 

(10) – (12) is studied e.g. in [1], [2], [8]. The results 

can be briefly formulated in the engineering 

parlance as follows: 

a) Equation (10) has a solution if and only if the 

greatest left common divisor of matrices A, B is a 

left divisor of C. 

b) Equation (11) has a solution if and only if the 

greatest common right divisor of matrices A, B is a 

right divisor of C. 

c) Equation (12) has a solution if and only if the 

matrices 

 

0
,

0 0

A A C

B B

   
   
   

 (13) 

are equivalent. This case is out of the interest of this 

contribution and some details can be found in [2]. 

If a particular solution of a given linear 

Diophantine equation exists, there exist a set of all 

solutions. In the case of (10), (11) the sets of 

solutions are given  

0 1 0 1, ,X X BT Y Y AT     (14) 

 

where X0, Y0 are particular solutions of (10) and T is 

an arbitrary polynomial matrix of the appropriate 

dimension and 

 

1 1 1 1.A B B A  (15) 

 

Solutions of (11) are  

 

0 2 0 2, ,X X TB Y Y TA     (16) 

 

and again X0, Y0 are particular solutions of (11), T is 

an arbitrary polynomial matrix of the appropriate 

dimension and 

 

2 2 2 2.B A A B  (17) 

 

Relations (15), (17) are nothing else than the 

opposite matrix fraction. Suitable and convenient 

tools for the solution of linear matrix equations are 

offered by a Polynomial toolbox [17] which 

contains a set of user friendly Matlab functions for 

various control system purposes. 

As a simple example solve equation (10) for 

matrices 

 

1 1 1

1 2 1.5 1 0
, ,

3 2 2 0 1

s
A B C

s s

     
       

      
 (18) 

 

Matlab function AXBYC in Polynomial toolbox 

gives the particular solution 

 

 

0

0

0 0.33
,

2 0.67 0.67

2 0.67 0.67

X
s

Y s

 
  

  

  

 (19) 

 

All solution are given in the form (14) with  

 

1 1 2

1 2 0.94 0.47
, .

3 2 2.4 2.8 0.94

s s
A B

s s s

    
    

     
 (20) 

 

The free polynomial matrix T has the form 

 

 1 2( ) ( )T t s t s  (21) 

 

with t1(s), t2(s) arbitrary polynomials. Really, the 

product 1 1 1 1A B B A gives the same result in the form 
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2

2 3

5.7 4.2 1.4

7.5 1.9 4.7 0.94

s s

s s s

  
 

   
 (22) 

 

which confirms equation (15). 

 

5 Control Design 
The most frequent scheme for a basic feedback 

control system is depicted in Fig. 1. All signals in 

the MIMO case are vector ones. Input signals of the 

feedback system in Fig. 1 is a reference (set point) 

signal w = Fw
-1

(s) Gw(s) and a load disturbance 

signal d = Fd
-1

(s) Gd(s) defined by their matrix left 

matrix fractions. 

 

Fig. 1 one degree of freedom (1DOF) control 

system 

All stabilizing controllers for the 1DOF feedback 

system in Fig. 1 are given by any solution of matrix 

Diophantine equation 

 

( ) ( ) ( ) ( ) ( ),R RA s P s B s Q s M s   (23) 

 

where P
-1

(s)Q(s) =  QR(s) PR
-1

(s) is a left and right 

matrix fraction of the controller C and A
-1

(s)B(s) = 

BR(s)AR
-1

(s) is a left and right matrix fraction of the 

controlled plant G. More details ca be found e.g. in 

[1], [5], [12], [15], [16]. 

However, for asymptotic tracking and disturbance 

rejection must be fulfilled further conditions. Briefly 

speaking, denominator of the controller must be 

divisible by the denominators of input signals. It is a 

reason for a pre-compensator F in Fig. 2 which 

represents the conditions of divisibility. In the case 

of asymptotic tracking only, it is F=Fw. In the case 

of simultaneous asymptotic tracking and disturbance 

rejection F=FwFd. The basic stability and 

asymptotic tracking in the sense of Fig. 2 is then the 

controller QR(s)PR
-1

(s) given by the solution of 

matrix Diophantine equation 

 

( ) ( ) ( ) ( ) ( ) ( ),R RA s F s P s B s Q s M s   (24) 

 

where M(s) is a stable polynomial matrix with 

prescribed poles of its determinant. Resulting 

matrices PR, QR represent the right matrix fraction 

 

1 1( ) ( ) ( ) ( )R RP s Q s Q s P s   (25) 

 

Fig. 2 feedback 1DOFcontrol system with pre-

compensator 

 

The control law is then governed by the equation  

 
1( ) ( ) ( ) ( )( ( ) ( )),P s F s U s Q s W s Y s    (26) 

 

which can be easily rewritten into differential 

equations. Now, it is necessary to propose the 

method for solution of matrix equation (2). For 

simpler cases, the solution can be found by means of 

elementary column operation, according to the 

scheme 

 

elementary column

operations


 
(27)  

 

Elementary column operations (27) may always 

be lead in the way that the polynomial matrix PR(s) 

remains as unit matrix and the conversion (25) is 

trivial and also a unit one. Then no inversion in (26) 

is necessary and the realization of the control law is 

very simple.  In more complex cases, the standard 

techniques based on Euclidean algorithms can be 

used, see [2], [8], [15]. More complex matrix 

polynomial equations can be conveniently solved by 

Polynomial toolbox [17] as it is shown in Section 

IV. 

 

 

6 Illustrative Examples 
Illustrative examples 1 - 3 in this contribution are 

first order stable, unstable and integrating ones two 

input – two output (TITO) systems are represented 

by the matrix equation  

 

1 2 1 21 1

3 4 3 42 2

( ) ( )

( ) ( )

s a a b bY s U s

a s a b bY s U s

      
      

       
 (28) 

The stabilization matrix Diophantine equation 

(24) takes the form 

 

1

2

0

R

R

M

P Z

Q Z

 
 
 
 
 

0

0

AF B

I

I

 
 
 
 
 
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1 2 1 2 1 2

3 4 3 4 3 4

2
1 0 5 4 0

2
3 2 7 6 0

0

0

( ) 0

0 ( )

s a a p p b bs

a s a p p b bs

q s q q s q s m

q s q q s q s m

      
      

       

    
   

     

 (29) 

 

 

Example 1: Let a TITO linear continuous-time 

system be expressed by the Laplace transform 

technique in the form 

 

1 1 2 1 2

2 2 1 1 2

'( ) 2 ( ) 0.8 ( ) 5 ( ) 6 ( )

'( ) 1.5 ( ) 0.6 ( ) 2 ( ) 3 ( )

y t y t y t u t u t

y t y t y t u t u t

   

   
 (30) 

The Laplace transform of equations (6) gives 

matrices A, B 

 

2 0.8 5 6
( ) , ( )

0.6 0.6 2 3

s
A s B s

s

   
    

   
 (31) 

The system described in (31) is evidently stable 

because det A = s
2
 + 2.6s + 0.72 is a stable 

polynomial. Then the scheme (27) can be applied 

and the result is in the form of generalized PI 

controller: 

 

1 1 1 0 1 5 2 4 2

2 3 1 2 1 7 2 6 2

( ) ( )

( ) ( )

u q e q e d q e q e d

u q e q e d q e q e d

   

   

    

    
 (32) 

where controller parameters were obtained by 

elementary column operations according scheme (5) 

in the form: 

 

1 0

2

0 0

3 0

2

2 0

2 0.8

4 1

3 3

2

3

q m

q m

q m

q m

 



  

 

        

5 0

2

4 0

7 0

2

6 0

4 2.2

2

10 5.9

3 3

5

3

q m

q m

q m

q m

  

 

 



 (33) 

 

In (9) ei are naturally tracking errors and m0>0 is 

a tuning parameter influencing control behaviour. 

 

Example 2: Let an unstable TITO linear 

continuous-time system can be expressed by 

differential equations  

1 1 2 1 2

2 2 1 1 2

'( ) ( ) ( ) ( ) 0.5 ( )

'( ) 0.5 ( ) 2 ( ) 0.8 ( ) 2 ( )

y t y t y t u t u t

y t y t y t u t u t

   

   
 (34) 

and the matrix expression has the form 

 

1 1

2 2

( ) ( )1 1 1 0.5

( ) ( )2 0.5 0.8 2

Y s U ss

Y s U ss

       
      

      
 (35) 

Matrix equation (27) gives the controller 

matrices PR, QR  

 

1 0 5 4

3 2 7 6

1 0

0 1
R R

q s q q s q
P and Q

q s q q s q

   
   

    
   (36) 

where parameters are 

 

1 0

2

0 0

3 0

2

2 0

2.5 0.65

1.25

0.75

0.5

q m

q m

q m

q m

 



  

 

     

5 0

2

4 0

7 0

2

6 0

0.6 1.1

0.3

1.25 0.19

0.625

q m

q m

q m

q m

  

 

 



 (37) 

 

The form of the control law (32) is again a 

generalized PI controller. 

 

Example 3: Let an integrating (also unstable) 

TITO linear continuous-time system can be 

expressed by differential equations 

 

1 2 1 2

2 1 1 2

'( ) ( ) ( ) 0.5 ( )

'( ) 0.5 ( ) 0.6 ( ) 1.5 ( )

y t y t u t u t

y t y t u t u t

  

  
 (38) 

Determinant of A(s) = s
2
 – 0.5 is evidently an 

unstable one. The controller is derived in a similar 

way but at the right hand side of (29) is the stable 

matrix M(s) in the form 

 
2

1

1 22

2

( ) 0
( ) , , 0

0 ( )

s m
M s m m

s m

 
  

 
 (39) 

The choice of different mi > 0 gives the 

possibility of different dynamics in both controlled 

outputs. The control law is again in the form of (32) 

with the following set of parameters qi: 
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1 1

2

0 1

3 1

2

2 1

2.5 0.21

1.25

0.42

0.5

q m

q m

q m

q m

 



  

 

     

5 2

2

4 2

7 2

2

2 2

0.83 1.25

0.42

0.5 1.67

0.83

q m

q m

q m

q m

  

 

 



 (40) 

The last example represents a simple 

asymmetrical case, a two input – one output system 

of the first order gives also a kind of a generalized 

PI controller.  

 

Example 4: A controlled system is a two input – 

single output (TISO) system described by the 

differential equation 

 

1 1 1 2'( ) 0.5 ( ) 0.5 ( ) 1.2 ( )y t y t u t u t    (41) 

 

System (41) is evidently an unstable one. The 

initial and final state of the scheme of stabilizing 

equation (24) is 

 

 

 

 

 

and the control law takes the form of two equations 

which can be also considered as a generalized PI 

controller 

 

1 0 1

2

2 0 1

( ) (4 1) ( )

( ) 0.833 ( )

u t m e t

u t m e d 

 

 
 (42) 

 

An important remark is that there exist an infinite 

number of feasible stabilizing controllers. It depends 

how to choose elementary column operations in 

reduction (27). Control law (42) represents 

proportional controller in u1(t) and an integrating 

one in the u2(t) control loop. Polynomial toolbox 

[17] gives a similar solution but not necessarily the 

same one. 

 

 

7 Simulation Results 
Matlab and Simulink offer a suitable environment 

for modelling and simulation of dynamic systems. 

The Simulink scheme for two input – two output 

unstable system (7) with controller (10) is depicted 

in Fig. 3.  

Control responses of stable TITO system 

(Example 1) for tuning parameter m0=1.5 and m0=3 

are shown in Fig. 4. The control responses of the 

unstable TITO system (example 2) for tuning 

parameter m0=1.5 and m0=3 are shown in Fig. 5. 

 

 
Fig. 3 simulink scheme of feedback unstable system 

 

Examples 1 and 2 illustrate that tuning parameter 

m0 > 0 influences the dynamical behavior of the 

controlled variable in the stable as well as in the 

unstable case. The parameter m0 > 0 represents a 

multiple pole of the feedback characteristic 

polynomial. 

 

 
Fig. 4 control responses for m0=1.5 and m0=3 

(Example 1) 
 

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

Time (s)

w
, 

y

 

 

w1

y1 (m=1.5)

y2 (m=1.5)

w2

y1 (m=3)

y2 (m=3)

2 22

0 0

0

2

0

20.5 0.5 1.2 0.5 1.2

11 0 0 0 0

(4 1)0 1 0 1 0

0 0 1 0 10.833

s m ms s
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Fig. 5 control responses for m0=1.5 and m0=3  

(Example 2) 

In some cases, it can be useful every controlled 

variable influence in different dynamics. It is easily 

obtained by a different choice of poles in feedback 

loops. The situation is shown in Fig. 6 and Fig. 7 for 

TITO integrating system. While the response in Fig. 

6 is for m1 = m2 = 1, the responses in Fig. 7 are for 

the choice m1 = 1.5, m2 = 2. 

Fig. 8 and Fig. 9 illustrate control responses of the 

two input – single output system solved in Example 

4. Tuning parameter m0 > 0 again influences the 

control behaviour and dynamics. 

 

 
Fig. 6 control responses (Example 3) of integrating 

system for tuning parameters m1 = 1, m2 = 1. 
 

 

 
Fig. 7 control responses (Example 3) of integrating 

system for tuning parameters m1 = 1.5, m2 = 2. 

 

 
Fig. 8 control responses (Example 4) of TISO 

system for tuning parameters m0=0.5.  

 

 
Fig. 9 control responses (Example 4) of TISO 

system for tuning parameters m0=1. 
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8 Conclusion 
The paper deals with multivariable control of simple 

continuous-time linear systems. The controller 

design is performed through a solution of a matrix 

Diophantine equation. This approach enables to 

define one or a couple scalar tuning parameters for 

influencing of control behaviour. The tuning 

parameters represent poles of the characteristic 

feedback equation. In the first order cases, the 

solution and a final controller can be obtained in 

simple and explicit form performing by elementary 

column operation of the given matrices. Resulting 

controllers then are of generalized PI controllers. All 

simulations and results are clearly demonstrated in 

the Matlab-Simulink environment. 
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