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Abstract 

The present work investigates the effect of epoxy resin (EP) modification with polyurethanes (PURs) 

based on polyethylene glycol and two different diisocyanates: 4,4'-diphenylmethane diisocyanate 

(MDI) and 2,4-toluene diisocyanate (TDI). The impact strength of the material based on 15 wt% PUR 

with TDI was enhanced by 130%, while the critical stress intensity factor and the flexural strength of 

epoxy composition based on 5 wt% PUR with MDI increased by approximately 140% in comparison 

with unmodified EP. Fourier transform infrared spectroscopy confirmed the occurrence of chemical 

reaction between the hydroxyl groups of EP and isocya- nate groups of PUR, explaining the 

improvement in the mechanical properties of EP. Moreover, scanning electron micrographs showed a 

rough surface with plastic yielding and several microcracks in the compositions containing TDI-based 

PUR and deformed leaf-like morphology with more elongated structure for the EP modified with 

MDI-based PUR. 
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Introduction 

Epoxy resins (EP) are widely used as matrices for high-performance composite materials, surface 

coatings and adhesives for metals. However, due to their low impact strength (IS), poor resistance to 

crack propagation and low elongation at break, cured EPs have limited range of applications.
1,2

 Several 

methods, including the formation of interpenetrating polymer networks (IPNs), were used to toughen 

EP.
1,3-17

 In this respect, polyur- ethanes (PURs) proved to be successful, mainly due to their high 

flexibility and versatile structure.
18

 

PUR/EP grafted IPN with combined advantages of both the polymers were first reported by Frisch et 

al.
6
 It was demonstrated that PUR can be linked to EP through physical entanglements and chemical 

bonding to form graft IPN. Li and Mao
7
 prepared semi-IPN EP/PUR and evaluated their thermal and 

mechanical properties, demonstrating that the two polymers are compatible at weight ratio of EP/PUR 

equating 70/30. Moreover, scanning electron micrograph (SEM) indicated that this semi-IPN has a 

two-phase continuous structure that changes with different weight compositions. Also, the occurrence 

of the glass transition temperature (Tg) between those of EP and PUR was related to the EP/PUR 

interface. 

Park and Jin
8
 found that the polar components of the surface free energy of the EP/PUR composition is 

largely influenced by the addition of PUR resulting in an increase in critical stress intensity factor 

value as well as IS at low temperatures. The improvement in the mechanical properties was explained 

as a result of the increase in the strength of the hydrogen bonds between the hydroxyl groups of EP and 

the isocyanate groups of PUR. 

Cristea et al.
9
 synthesized and studied the damping properties of semi-IPNs based on EP and PUR, 

which was prepared using poly(ethyleneadipate) diol, 4,4'-diphenyl-methane diisocyanate (MDI) and 

butylene glycol. They found that the heat treatment conditions affect significantly the blend's 

viscoelastic properties. Moreover, a weak softening and a completion of the cross-linking were 

observed upon temperature increase. 

Wang et al.
10

 studied the damping, thermal and mechanical properties of EP/PUR IPNs. PURs with 

various isocyanate indexes were synthesized using poly(tetramethylene glycol) and 2,4-toluene 

diisocyanate (TDI). They found that the tensile strengths of the IPNs decreased, while their ISs 

increased with increasing PUR content. Furthermore, the formation of EP/PUR IPN might improve 

not only the damping capacity but also the thermal stability. 

Recently, the effect of isocyanate index of TDI-based PUR on the mechanical and thermal properties 

of diglycidyl ether of bisphenol A cured with triethylenetetramine was investigated,
11

 and the positive 

effect of the reactive groups was confirmed. 

Furthermore, it was shown that the PUR can be linked to the epoxy network through physical 

entanglements as well as chemical bonding resulting in graft-IPN structures with enhanced mechanical 

properties. Hsieh and Han
12

 evaluated the mechanical properties of graft-IPN based on EP and PURs 

based on polyols with different chain lengths. They concluded that the significant improvement in the 

tensile strength was due to the grafted structure and simultaneously the shortness of PUR chains. 

However, Raymond and Bui
13

 prepared IPNs from EP, TDI-based PUR and castor oil and confirmed 

the occurrence of chemical reactions between isocyanate groups of PUR with hydroxyl groups of the 



epoxy matrix leading to the enhancement of thermal resistance and tensile properties. However, the 

article did not report an increase in the impact resistance. 

In a separate work, Harani et al.
14

 confirmed that isocyanate-terminated PUR reacts with EP leading to 

a significant fracture toughness improvement. Moreover, the use of chain extender with PUR 

prepolymer caused a sevenfold increase in IS and almost twofold increase in critical stress intensity 

factor in comparison with the unmodified EP. The improvement in the EP fracture toughness was 

attributed to the grafting reactions between the polymer matrix and the modifier. 

Wang and Chen
15

 modified EP using PUR prepolymer synthesized from polyether diol and MDI with 

the support of a coupling agent. PUR modifiers were terminated with hydroxyl, amine and anhydride 

functional groups. They found that the addition of PUR improves the fracture energy of EP, and the 

most pronounced enhancement in the mechanical properties is obtained with hydroxyl terminated 

PUR. Furthermore, the analysis of SEM and transmission electron micrograph scans depicted phase 

separation, which might influence toughening mechanism. 

Chern et al.
16

 prepared IPNs from PUR based on poly(oxypropylene)triol grafted with 

polyacrylonitrile and EP. The investigation of mechanical properties and morphology of the networks 

has shown that the tensile strength increased with increasing amount of EP and that some grafting 

reactions have taken place between PUR and hydroxyl group of epoxy. 

The aim of the present work is to compare the modification of EP with PURs based on TDI and MDI. 

Reactions are to be expected between the isocyanate (NCO) groups of PUR and the OH groups of the 

polymer matrix, enhancing the mechanical properties of the latter. 

Experimental 

Materials 

The following components were used in the present work: 

• Epoxy resin–diglycidyl ether of bisphenol A (Epidian 5, Organika Sarzyna, Poland) with a molecular 

weight of 400 g/mol, viscosity at 25° C around 30 Pa s and epoxy number of 0.49-0.52 mol/100 g; 

• Triethylenetetramine hardener (trade name Z1, Organika Sarzyna, Poland); 

• Polyethylene glycol with molecular weight of 400 g/mol (PEG 400) and 277 mg/g hydroxyl number 

(Merck, Germany); 

• 2,4-Toluene diisocyanate (TDI) for the synthesis produced by Merck; 

• 4,4'-Diphenylmethane diisocyanate (MDI) for the synthesis produced by Merck; 

• Dibutyltin dilaurate catalyst (Merck); 

• Acetone (Merck). 



 

Samples preparation 

Preparation of PURs. Two types of PURs were prepared: based on polyethylene glycol (PEG 400) 

and TDI (PUR 400T) and PEG 400 and diphenylmethane diisocyanate (PUR 400M). 

The TDI-based PUR was prepared as follows: 50 g of polyol and 0.25 ml of dibutyltin dilaurate were 

mixed mechanically for 15 min under vacuum and then heated to 40°C. Then, one half of the TDI 

amount (22.55 g) was added dropwise over 15 min and the reaction was carried in a nitrogen 

atmosphere for 30 min while the temperature is maintained below 60°C. The mixture was cooled to 

25°C before adding 50 ml of acetone to reduce the viscosity. Finally, the rest of TDI was added 

dropwise for another 15 min and the temperature is maintained below 40°C. 

For MDI-based PUR, 50 g of polyol and 0.25 ml of dibutyltin dilaurate were stirred for 5 min under 

vacuum and cooled down to below 10°C to slow down the exothermic reaction between isocyanate 

and hydroxyl groups. Then, 27 g of MDI was added rapidly and the reaction was carried under 

nitrogen atmosphere with vigorous mixing for 10 min while the temperature is still maintained below 

15°C until the increase in reaction mixture viscosity. All prepared PURs had the isocyanate index 

equal to 1.05. 

Preparation of PUR-modified Eps. PUR was mixed with EP in amounts of 5, 10, 15 and 20 wt% for 

20 min at a rotational speed of 2400 r/min at room temperature. The mixtures were then placed in a 

vacuum oven to remove air bubbles. Subsequently, the curing agent was added and the mixing 

continued for 5 min before pouring the obtained compositions into the cavities of a mold to produce 

specimens for mechanical tests. The curing reactions were carried out at room temperature for 48 

hours followed by post-curing for 3 hours at 80°C. 

Mechanical properties measurements 

Impact strength was measured according to Charpy method using a Zwick 5012 apparatus (ISO 179) 

on the samples of 80 x 10 x 4 mm
3
 and 1 mm notch. 

Three-point bending tests (ISO 178) were carried out at room temperature on the specimens of same 

dimensions as for impact tests using Instron 5566 at a deformation rate of 5 mm/min. The distance 

between the spans was 60 mm. 

The critical stress intensity factor (KC) was evaluated by means of three-point bending tests on the 

notched (1 mm) specimens having the same dimensions as impact test samples. The test was carried 

out using Instron 5566 with a deformation rate of 5 mm/min and a distance between the spans of 60 

mm using the following equation
19
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where P stands for load at break; L: distance between the spans; a: crack length; w: sample width; B: 

sample thickness and Y: geometrical factor, which is given by the following formula
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Five samples were used for each data point.  

Characterization 

Fourier transform infrared (FTIR) spectroscopy was performed on Perkin-Elmer spectrophotometer 

(1000 PC) recording the IR spectra from 400 to 4000 cm
-1

. KBr pastilles (10 mg) containing 1.0 ± 0.1 

mg of tested composition were used for the precise characterization of peak intensity. Scanning 

electron microscope (Hitachi S-2460 N) was employed to examine the fracture surfaces of specimens 

obtained from the impact tests. Differential scanning calorimetric (DSC) tests were carried out on a 

Perkin-Elmer (Pyris 1) apparatus with the scan rate of 10° C/min within a temperature range from –25 

to 200°C under nitrogen atmosphere. The Tg was recorded at the median point in the range of glass 

transition. 

Results and discussion 

Mechanical properties 

The IS, the KC and the flexural properties (stress at break, strain at break and energy at break) were 

measured for EP containing various amounts of PUR 400T and PUR 400M. It can be noted from 

Figure 1 that all epoxy-modified compositions exhibited higher IS values in comparison with neat EP; 

maximum IS improvement (about 130%) was obtained with epoxy sample with 15 wt% PUR 400T 

and 50% with only 5 wt% MDI-based PUR. The difference in EP IS with same amounts of added PUR 

400T and PUR 400M may arise from different structure of diisocyanates involved in the modifier 

preparation. 

The improvement in impact behavior may be explained by the presence of flexible PUR chains, which 

tend to decelerate the crack propagation process. 

However, KC values (Figure 2) point to higher resistance to crack the propagation of modified 

compositions in relation to the pristine sample. Maximum KC value, representing approximately 140% 

improvement, was obtained for the material based on 5 wt% PUR 400M. The improvement in the 

resistance to slow crack propagation expressed by KC or fast crack propagation represented by IS 

values might be attributed to the formation of IPN structure induced by PUR modifier within epoxy 

matrix. The presence of flexible PUR segments provided more free volume, which in turn facilitates 

the movement in EP chains. Consequently, the resistance of EP/PUR system to crack propagation was 

enhanced in relation to unmodified EP. 

The effect of PUR on flexural properties of EP in terms of flexural strength, strain at break and energy 

at break is demonstrated in Figures 3 to 5. 

Similar to IS and KC results, the modified epoxy compositions exhibited higher flexural strength than 

virgin polymer matrix. The addition of 5 wt% PUR 400M to EP resulted in about 140% increase in its 

flexural strength and is attributed to the formation of an IPN structure combined with grafting 

reactions between EP and the polymeric modifier confirmed by FTIR analysis. 



 

 

Figures 4 and 5 show the evolution of flexural strain at break and energy at break of EP as function of 

PUR 400 TDI and PUR 400M content. The improvement in these two parameters was more 

pronounced than the flexural strength most probably due to the high elasticity of PUR modifier and the 

significant strain at break of PUR modified EP. 

 

Figure 1. Effect of polyurethanes prepared from TDI (PUR 400T) and MDI (PUR 400M) on the 

impact strength (IS) of epoxy resin. MDI: 4,4'-diphenylmethane diisocyanate; TDI: 2,4-toluene dii- 

socyanate; PUR: polyurethane. 

 

Figure 2. Effect of polyurethane based on TDI (PUR 400T) and MDI (PUR 400M) on the critical 

stress intensity factor (KC) of epoxy resin. MDI: 4,4'-diphenylmethane diisocyanate; TDI: 2,4- 

toluene diisocyanate; PUR: polyurethane. 



 

 

 

 

Figure 3. Effect of polyurethane based on TDI (PUR 400T) and MDI (PUR 400M) on the flexural 

stress at break of epoxy resin. MDI: 4,4'-diphenylmethane diisocyanate; TDI: 2,4-toluene 

diisocyanate; PUR: polyurethane. 

 

Figure 4. Effect of polyurethane based on TDI (PUR 400T) and MDI (PUR 400M) on the flexural 

strain at break of epoxy resin. MDI: 4,4'-diphenylmethane diisocyanate; TDI: 2,4-toluene diisocya-

nate; PUR: polyurethane. 



 

 

The addition of flexible segments was found to contribute to the improvement in tensile properties 

(strain at break and energy to break) through better EP/PUR compatibility, and similar findings were 

reported in the literature for liquid rubbers in EP toughening.
20,21

 It is well accepted that flexible chains 

provide more free volume to the systems and thus lead to increase in elongation at break and 

consequently the increase in energy to break of the tested samples. 

On the contrary, other researchers reported opposite results when different liquid rubbers were used to 

toughen diglycidyl ether of bisphenol A.
22,23

 Ben Saleh et al.
22

 attributed the reduction in the 

mechanical properties of EP to the presence of low modulus rubber, which was well distributed in the 

polymer matrix. 

Materials based on MDI showed higher values of strain and energy to break (obtained from the area 

under the load-displacement curve during flexural testing) when compared with TDI composites. With 

only 5 wt% of PUR 400M, more than threefold improvement in energy at break and sevenfold increase 

in strain at break in comparison with virgin EP is achieved. This might be explained by the quite linear 

structure of MDI with the presence of two NCO groups in para position with respect to –CH2 groups as 

compared with the bulky structure of TDI. Generally, the formation of linear chains within polymer 

matrix leads to flexibility increase in the matrix/modifier system. 

High values of elongation at the break of EP/PUR 400M can result from the flexibility of PUR chains 

giving rise to more free volume and consequently more chain movement leading to high elongation 

before fracture occurrence. Similar results were already reported for a plasticized brittle thermoset.
24

 

 

Figure 5. Effect of polyurethane based on TDI (PUR 400T) and MDI (PUR 400M) on flexural 

energy at the break of epoxy resin. MDI: 4,4'-diphenylmethane diisocyanate; TDI: 2,4-toluene dii- 

socyanate; PUR: polyurethane. 



 

It is seen that epoxy hydroxyl groups react with PUR isocyanate groups to yield more reticulate 

structure, which may explain the improvement in EP mechanical properties. These findings were also 

reported by other researchers on similar systems.
14

 

Structure characterization 

FTIR spectra presented in Figure 6 were obtained for the structure characterization of virgin EP and 

compositions modified with PUR 400T and PUR 400M. We can observe characteristic peaks 

connected with functional groups of EP appearing at 3300 cm
-1

 for hydroxyl group and 920 cm
-1

 for 

epoxy groups. The series of peaks within the wavelength range of 1000-1600 cm
-1

 are connected with 

aromatic rings. 

Allophonate and urethane groups from the PUR modifier are represented by the peak at 1700 cm
-1

. 

Moreover, the addition of TDI and MDI-based PURs resulted in the decrease in hydroxyl peak height 

by 52% and 74%, respectively. This finding proves the occurrence of grafting reaction between 

hydroxyl groups of EP and isocyanate groups of PURs. The grafting reaction is shown in Figure 7. 

 

Figure 6. FTIR spectra of unmodified epoxy resin (EP) and composites modified with 10% PUR 400T 

and 10% PUR 400M. FTIR: Fourier transform infrared; PUR: polyurethane. 



 

 

The formation of an IPN structure between the PUR and epoxy matrix chains accompanied by the 

occurrence of grafting reactions as mentioned above could explain the mechanical property 

enhancement of the polymer matrix. 

Fracture surface analysis 

SEMs were obtained from fractured surfaces of samples after impact tests near the crack tip and are 

employed to explain the toughening mechanism induced by PUR incorporation. The micrograph of the 

unmodified epoxy composition fracture surface is flat and glassy (Figure 8), indicating the occurrence 

of regular crack propagation path and low fracture energies of the tested samples. The lack of specific 

features or significant plastic deformation associated with the smooth surface indicates that the 

specimen fractured in a brittle manner. 

Figure 9 shows the micrographs of EP containing 15 wt% of PUR prepared from TDI (PUR 400T) and 

15 wt% PUR 400 based on MDI (PUR 400M). It can be noted that the addition of PUR to the polymer 

matrix had resulted in an obvious change in the morphology of the neat polymer matrix. The fracture 

surface of composition containing 15 wt% PUR 400T (Figure 9(a)) is rougher with significant plastic 

deformations and several microcracks. 

However, the micrograph of sample containing 15 wt% of MDI-based PUR (Figure 9(b)) presents a 

deformed leaf-like morphology and a more elongated structure. The observed significant structure 

deformation might be responsible for IS improvement due to considerable absorbed energy during the 

crack propagation process. 

Differential scanning calorimetry was employed for characterization of thermal behavior of the 

compositions containing 10 wt% of PUR based on TDI or MDI. Only one peak of each composition is 

obtained within the applied temperature range (from –100°C to +200°C), confirming the existence of 

one Tg for all tested compositions (Table 1). Such obtained result might be attributed to the good 

compatibility between the EP and incorporated PUR modifier as well as the absence of two-phase 

system. 

 

Figure 7. Grafted structure of the epoxy/polyurethane composite. 



 

 

 

Figure 8. Scanning electron micrograph of unmodified epoxy resin. 

 

Figure 9. (a) SEM image of the epoxy composite containing 15% PUR 400T. (b) SEM image of the 

epoxy composite containing 15% PUR 400M. SEM: scanning electron micrograph; PUR: polyurethane. 



 

Furthermore, DSC analysis revealed that the Tg increased from 63°C to 68°C, with the addition of 15 

wt% PUR (Table 1), which can be – with the support of FTIR – explained as the result of the formation 

of large amount of interchain bonding. The increase in EP Tg due to PUR incorporation was attributed 

to grafting reaction by other authors.
20,25

 

Conclusions 

The addition of PURs based on toluene diisocyanate (PUR 400T) or diphenylmethane diisocyanate 

(PUR 400M) resulted in the improvement of mechanical properties of EP. All epoxy-modified 

compositions exhibited higher IS and the critical stress intensity factor (KC) values in comparison with 

neat EP. Maximum IS improvement, representing about 130% in comparison with pristine epoxy 

samples, was obtained for EP modified with 15 wt% PUR 400T, while the KC and the flexural strength 

were most enhanced (140%) for 5% PUR 400M-based composition. 

The structure characterization by means of FTIR spectra indicated the occurrence of grafting reaction 

between hydroxyl groups of the polymer matrix and isocyanate groups of the modifier. Moreover, 

SEM analysis of the fractured surfaces revealed the formation of elongated domains and regular 

parallel microcraks brought by the incorporation of MDI-based PUR, while the addition of TDI-based 

PUR led to the formation of a homogenous elongated structure with significantly plastic deformations. 

DSC results indicated the presence of a single Tg due to the good compatibility between the epoxy 

matrix and the modifier. The addition of the latter led to an increase in the Tg. 
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