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Abstract: This paper presents the design and simulation of adaptive control for a two 
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I. INTRODUCTION 2. A DESCRIPTION OF A TWO INPUT - TWO 
OUTPUT SYSTEM 

Many technological processes require that several 
variables relating to one system are controlled 
simultaneously. Each input may influence all system 
outputs. The design of a controller able to cope with 
such a system must be quite sophisticated. There are 
many different methods of controlling multivariable 
systems. Several of these use decentralized PID 
controllers (Luyben 1986), others apply single input­
single-output (SISO) methods extended to cover 
multiple inputs (Chien et al. 1987). Here decoupling 
methods are used to transform the multivariable 
system into a series of independent SISO loops 
(Krishnawamy et al. 1991; Tade et at. 1986; 
Wittenmark et al. 1987; Skogestad and Postlethwaite 
1996). 

This paper is organized as follows : Section 2 presents 
the controlled model; Section 3 describes how 
feedback control without decoupling is designed; 
Section 4 describes two decoupling methods; Section 
5 describes the system identification method; Section 
6 gives the simulation results; Section 7 contains the 
experimental results; finally, Section 8 concludes the 
paper. 
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The internal structure of the the system is shown in 
Fig. I 

Fig. 1. A two input - two output system - the "P" 
structure 

The transfer matrix of the system is 

(I) 

It is possible to assume that the system is described 
by the matrix fraction 



Where polynomial matrices AERmm[zo l), BERmn[zol) 
are the left indivisible decomposition of matrix G(zol) 
and matrices AIERmm[zol), BIERmnVI) are the right 
indivisible decomposition. 

The matrices of the discrete model are 

(3) 

and the differential equations of the model are 

YI (k)= -alYI (k -1)-a 2YI (k -2)-aJY2(k -1)-

-a4Yz(k-2)+blul(k-I)+bzul(k-2)+ (4) 

+b3u2(k -1)+b4 u2(k -2) 

Yz (k)= - asY I (k -1)- a6 YI (k - 2)- a7 Y2 (k -1)­
- ag),z (k - 2)+ bsu 1 (k -1)+ b6 u1 (k - 2)+ 

+ b7 uZ (k -1)+ bgu Z (k - 2) 

3. DESIGNING FEEDBACK CONTROL 

~ 
y 

Fig. 2. Block diagram of the closed loop system 

.. 

In the same way as the controlled system, the transfer 
matrix of the controller takes the form of matrix 
fraction 

The matrix of an integrator for permanent zero 
control error is 

(6) 

The control law apparent in the block diagram 
(operator zol will be omitted from some operations for 
the sake of simplification) has the form 

(7) 

It is possible to derive the following equation for the 
system output 

Y=A-1Br1p-IQE=A -1Br1p-IQ(w-y) (8) 

which can be modified to give 

(9) 

The closed loop system is stable when the following 
diophantine equation is satisfied 

AF~+BQI =M (10) 
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I+msz- I +m6z-2 + 

+m
7
z -J +m

B
z-4 

(11) 

The roots of this polynomial matrix are the ruling 
factor in the behaviour of the closed loop system. 
They must be inside the unit circle if the system is to 
be stable. 

The degree of the controller matrices polynomials 
depends on the internal properness of the closed loop. 
The structure of matrices PI and QI was chosen so 
that the number of unknown controller parameters 
equals the number of algebraic equations resulting 
from the solution of the diophantine equations using 
the uncertain coefficients method. 

The solution to the diophantine equation results in a 
set of sixteen algebraic equations with unknown 
controller parameters. The controller parameters are 
given by solving these equations. 

4. DESIGNING DECOUPLING CONTROL 
USING COMPENSATORS 

There are several ways to control multivariable 
systems with internal interactions. Some make use of 
decentralized PID controllers, whilst others are 
composed of a string of single input - single output 
methods. 

One possibility is the serial insertion of a 
compensator ahead of the system (Krishnawamy et 
al. 1991 ; Peng 1990; Tade et al. 1986; Wittenmark et 
al. 1987). The aim here is to suppress of undesirable 
interactions between the input and output variables so 
that each input affects only one controlled variable. 

~I" 
Fig. 3. A Closed loop system with compensator 

The resulting transfer function H is then given by 

H=KG (13) 

The decoupling conditions are fulfilled when matrix 
H is diagonal. 

Several well - known compensators are given in 
(Krishnawamy et a/. 1991 ; Peng 1990; Tade et at. 



1986; Wittenmark et at. 1987). Control algorithms 
were derived for the model above with two 
compensators. These will be referred to as Cl and C2• 

Compensator Cl is the inversion of the controlled 
system. Matrix H is,therefore, a unit matrix. 

y 

Fig. 4. The closed loop system with compensator Cl 

This block diagram leads to an equation for the 
system output which takes the form 

Y = P/(FP/ + QJ/ Q/p/-/w (14) 

The following equation must be satisfied if the closed 
loop system is to be stable 

F~+QI=M (IS) 
The structure of the polynomial matrices of the 
controller were chosen to suit physical demands. 

~(z-I)=[~ ~] 
QI (z-I) = [ql~-I 

Consequently, matrix M was chosen to be 

(16) 

M(Z- I)=[I+molz-
1 

0] (17) 
1+ m2z- 1 

The controller parameters are the result from the 
equation (15). The control law can be described by 
matrix equation 

(18) 

Compensator C2 is adjugated matrix B. When C2 was 
included in the design of the closed loop the model 
was simplified by considering matrix A as diagonal. 
The multiplication of matrix Band adjugated matrix 
B results in diagonal matrix H . The determinants of 
matrix B represent the diagonal elements. When 
matrix A is nondiagonal, its inverted form must be 
placed ahead of the system in order to obtain 
diagonal matrix H , otherwise it may increase the 
order of the controller and sophistication of the 
closed loop system. Although designed for a diagonal 
matrix, compensator C2 also improves the control 
process for non - diagonal matrix A in the controlled 
system. This is demonstrated in the simulation 
results. 

y 
• 

Fig. 5. The closed loop system with compensator C2 

The equation for the system output as shown in this 
block diagram takes the form 
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(19) 

where 

B. =Ba£lj(B)=[de~B) de~B)] (20) 

To achieve stability in the closed loop system the 
following diophantine equation must be fulfilled 

(21) 

The controller polynomial matrices are chosen as 
shown below 

and matrix M is 

l+m1z-' + 

+ ~Z-2 + nI:lZ-
3 + 

o 

o 

l+m6z-' + 

""Z- 2 + ""Z - 3 + 

(23) 

+ ",,>Z - 4 +m
lO

z-5 

Solving the diophantine equation defines a set of 
algebraic equations which we subsequently use to 
obtain the unknown controller parameters. 

The control law is given by the block diagram 

FU = adAB)QI~-IE 

5. IDENTIFICATION 

(24) 

The algorithms designed here were incorporated into 
an adaptive control system with recursive 
identification. The recursive least squares method 
proved effective for self-tuning controllers (Bittanti 
et al. 1990) and was used as the basis for our 
algorithm. For our two-variable example we 
considered the disintegration of identification into 
two independent parts. 

The parameter vectors are completed as shown 
below: 

8 1 T (k) = [al.a2 .a).a4.bl.b2. b,.b4] (25) 

8/ (k) = [as . a6. a7 . ~. bs.b6'~'bs] 

The data vector is 

?T (k -1)= [- YI (k -1).- YI (k -2~ - Y2(k -I). (26) 

- Y2 (k - 2~ u I (k -l),u, (k - 2).u2 (k -1),u2 (k - 2)] 

The parameter estimates are actualized using the 
recursive least squares method plus directional 
forgetting. 



6. SIMULATION 

Matlab + Simulink for Windows (The MathWork, 
Inc.) were used to create a program and diagrams to 
simulate and verify the algorithms. Verification by 
simulation was carried out on a range of systems with 
varying dynamics. The control of the model below is 
given here as our example. 

0,1.::-
1 
+0.2.:: -

2 
] (27) 

1+ 0,3;:- -1 + 0.1;:-- 2 

Fig. 6 shows the system ' s step response 

Step Response 
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Fig. 6. The step response ofthe system 

The right side control matrices are denoted as 
follows: without compensator MJ, with 
compensator Cl - M 2, and with compensator C2 - M 3• 

The same initial conditions for system identification 
were used for all the types of adaptive control we 
tested. The initial parameter estimates were chosen to 
be 

8/(0) = [0.1.0.2.0.3.0.4.0,1.0.2.0.3.0.4] (29) 

8/ (0) = [0,5.0.6.0,7.0.8,0.5.0.6.0.7.0.8] 

The results of simulation are shown in Figs 7 - 12 . 

It is possible to draw several conclusions from the 
simulation results of the experiments on linear static 
systems. The basic requirement to ensure permanent 
zero control error was satisfied in all cases. The 
criteria on which we judge the quality of the control 
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process are the overshoot on the controlled values 
and the speed with which zero control error is 
achieved. According to these criteria the controller 
incorporating compensator Cl performed the best. 
However, this controller appears to be unsuited to 
adaptive control due to the size of the overshoot and 
the large numbers of process and controller outputs. 
The controller which uses compensator C2 seems to 
work best in adaptive control. With regards to 
decoupling, it is clear that controllers with 
compensators greatly reduce interaction. 
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Fig. 7. Deterministic control without compensator 
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Fig. 8. Adaptive control without a compensator 
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Fig. 9. Deterministic control with compensator Cl 
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Fig. 10. Adaptive control with compensator Cl 
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Fig. 11 . Detenninistic control with compensator C 2 
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Our department has experimental laboratory model 
CE 108 - couples drives apparatus. This apparatus, 
based on experience with authentic industrial control 
applications, was developed in cooperation with the 
University of Manchester and made by a British 
company, TecQuipment Ltd. It allows us to 
investigate the ever-present difficulty of controlling 
the tension and speed of material in a continuous 
process. The process may require the material speed 
and tension to be controlled to within defined limits. 
Examples of this occur in the paper-making industry, 
strip metal and wire manufacture and, indeed, any 
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process where the product is manufactured in a 
continuous strip. 

The industrial type material strip is replaced by a 
continuous flexible belt . The principle scheme of the 
model is shown in the Fig. (13). It consists of three 
pulleys, mounted on a vertical panel so that they 
fonn a triangle resting on its base. The two base 
pulleys are directly mounted on the shafts of two 
nominally identical servo motors and the apparatus is 
controlled by manipulating the drive torques to these 
servo motors. The third pulley, the jockey, is free to 
rotate and is mounted on a pivoted arm. The jockey 
pulley assembly, which simulates a material work 
station, is equipped with a special sensor and tension 
measuring equipment. It is the jockey pulley speed 
and tension which fonn the principle system outputs. 
The belt tension is measured indirectly by monitoring 
the angular deflection of the pivoted tension arm to 
which the jockey pulley is attached. 

The manipulated variables are the inputs to the servo 
motors and the controlled variables are the tension 
and speed at the work station. There are interactions 
between the control loops. 

The task was to apply the methods we designed for 
the adaptive control of a model representing a non­
linear system with variable parameters which is, 
therefore, impossible to control detenninistically. 

~.::~~ : ~:' ~" . I 
o 50 100 150 1[5) 200 

Fig. 14. The adaptive control of a real model without 
a compensator 

Adaptive control using recursive identification both 
with and without the use of compensators was 
performed. As indicated in the simulation, 
compensator Cl was shown to be unsuitable and 



control broke down . The other two methods gave 
satisfactory results . The time responses of the control 
for both cases are shown in Fig. 14, Fig. 15, Fig. 16 
and Fig. 17. The figures demonstrate that control 
with a compensator reduces interaction. The 
controlled variable YI is the speed and the controlled 
variable Y2 is the tension . 
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Fig. 15. The adaptive control of a real model without 
a compensator - controller output 
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Fig. 16 The adaptive control of a real model using 
compensator C 2 
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Fig. 17. The adaptive control of a real model using 
compensator C 2- controller output 

8. CONCLUSIONS 

The adaptive control of a two-variable system based 
on polynomial theory was designed. Decoupling 
problems were solved by the use of compensators. 
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The designs were simulated and used to control a 
laboratory model. The simulation results proved that 
these methods are suitable for the control of linear 
systems. The control tests on the laboratory model 
gave satisfactory results despite the fact that the non­
linear dynamics were described by a linear model. 
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