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Abstract 

An approach of population dynamics and clustering for 
permutative problems is presented in this paper. 
Diversity indicators are created from solution ordering 
and its mapping is shown as an advantage for 
population control in metaheuristics. Self Organising 
Migrating Algorithm (SOMA) is modified using this 
approach and vetted with the Quadratic Assignment 
Problem (QAP). Extensive experimentation is 
conducted on benchmark problems in this area. 

Key words: SOMA, QAP, optimization, 
evolutionary heuristics 

1. Introduction 

Metaheuristics are algorithms, which are used for the 
optimization of complex systems. The vital attribute for 
these heuristics is that they have to operate without 
apriori information of the system. 
Metaheuristics operate on two ideological frameworks, 
firstly that a group of solutions provide a better platform 
to find optimal solution, and secondly that certain 
guiding concept leads the solutions towards the optimal 
solution, or nearby regions. 
A number of different transformation concepts have 
evolved within the scope of Metaheuristics [1]. 
Ant Colony, Genetic Algorithms, Differential 
Evolution, Particle Swarm Optimization and SOMA are 
some of the most potent heuristics available. Most of 
these algorithms have mimicked naturally occurring 
phenomena. 
The principle concept of the population is to provide a 
pool of solutions from which the optimal solution 
evolves from, however during the subsequent 
transformation, the solutions cluster together in nearby 
neighbourhoods. This leads to the loss of diversity of 
the solutions, and later generations are usually mutating 
within a cloned gene pool. This phenomenon is 
generally termed as stagnation and the two most current 
correcting tools are local search within the hierarchical 
population and forfeiting of some better-placed 
solutions in lieu of worst ones [2]. 
Stagnation is a major concern for evolutionary 
heuristics, since evolution is principally based on 
diversity of the existing population. The preconception 
that extended generations of a heuristic will lead to 
better solutions is nonviable for a stagnated population. 

This paper is devoted to the concept of the population 
and its controlling dynamics. It is shown through 
experiment that population control is an effective tool in 
sustaining the diversity of the population, which in turn 
leads to more viable regions of search space for 
exploration. 

2. Initial Population 

Random population provides an initial loose mapping of 
the solution space. For permutative problems, where 
solution ordering is strict, it is often the case that 
adjacent values are required. This also holds true for 
flow shop scheduling problems and vehicle routing 
problems. A typical approach of using local search 
heuristics to search in the neighbourhood of the 
solutions usually yields closely aligned solutions. 
The initial population P, for this heuristic is partially 
stochastic and partly deterministic. The population is 
divided into two sub-populations, SP's, one randomly 
generated (SPmnd) and the other structurally generated 
(SPstruct) as given in Fig 1. 

Fig. 1: Initial Population 

The formulation for SPmnd is fairly simple. A random 
permutative string is generated for each solution till a 
specified number given as Psize. 
The structured population SPstruct is somewhat more 
complex. It is made of two parts. In the first part an 
initial solution is generated with ascending values given 
a s xascending = {1,2,...,/?}, where n is the size of the 
problem. In order to obtain a structured solution, the 
first solution is segmented and recombined in different 
orders to produce different combinations. The first 

segmentation occurs at n/~ , and the two half's are 

swapped to produce the second solution. The second 

fragmentation occurs by the factor 3; Three 

regions of solutions now exist. The number of possible 
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recombination's that can exist is 3! = 6. At this point 
there are nine solutions in the SPstmct. The general 
representation is given as: 

k>\ + 2! + 3! + + z! (1) 
is the total number of permutations possible 

Spread Generalization 

where 

and k 

from 

x desending 

r. . The second part of SPstruct is made 

solution in descending order 
= {/?,..,2,1}. The end result is that two 

separate populations exist and are used independently 
by the underlying heuristic. 

3. Solution Dynamics 

A solution represented as X = {xl,x2,x3,....,xn}, 
where n is the number of variables, within a population 
has a number of attributes. Usually the most visible is 
its fitness value, by which it is measured within the 
population. This approach is not so viable in order to 
measure the diversity of the solution in the population. 
In retrespect, a single solution is assigned a number of 
attributes for measure, as given in Table 1. 

Table 1. Solution Parameters 
Parameter Description Activity 

Deviation 

Spread 
Life 

Offspring 

Measure of the deviation 
of the solution 
Alignment of solution 
Number of generation 
Number of successful 
offspring's produced 

Control 

Control 
Selection 

Selection 

The most important attribute is the deviation (the 
difference between successive values in a solution). 
Since we are using only permutative solutions, 
deviation or ordering of the solution is important. Each 
value in the solution has a unique footprint in the search 
space. The formulation for deviation is given as: 

2 > i - * i -
?-- Xi G YCvX2'—'Xn f 

J (2) 
Spread of a solution gives the alignment of the solution. 
Each permutative solution has a specific ordering, 
whether it is forward aligned or reverse aligned. 
Whereas deviation measures the distance between 
adjacent solutions, spread is the measure of the 
hierarchy of subsequent solutions given as: 

(+1 if(xM-x)>\ 
l-l if(xM-x)<\ 

where i e {1,2,....,«} 

d--

(3) 

The generalisation of spread is given in Table 2. 

Table 2. Spread generalization 

>0 

0 

<0 

Forward spread 

Even spread 

Reverse spread 

Life is the number of generations the solution has 
survived in the population and Offspring is the number 
of viable solutions that have been created from that 
particular solution. These two variables are used for 
evaluating the competitiveness of different solutions. 

3.1 Clustering 

Within the population, certain solutions exhibit 
attracting features. These points are usually local optima 
regions, which draw the solutions together. The 
approach utilized, is to subdivide the population in 
clusters, each cluster a distinct distance from another. 
Two controlling parameters are now defined which 
control the clusters. 

Cluster Attractor CA : The distance that each segment 

of solution has to differ from each other. The CA is 

given as: 

Q e [0.1,1+) (4) 

Within the population indexed by the deviation, 
solutions with similar deviation are clustered together, 
and each cluster is separated by at least a single CA 

cA ( 

(5) 

An illustrative example is presented to showcase how 
this approach works. Assume a group of solutions as 
presented in Table 3. 

Table 3. Illustrative example 
Solution Deviation Spread Cluster CA Fitness 
1 2 3 4 5 6 7 8 9 10 
1 2 5 6 9 10 3 4 7 8 
10 9 8 7 6 5 4 3 2 1 
10 9 6 5 2 1 8 7 4 3 
6 4 8 2 3 9 1 5 7 1 0 
9 4 3 7 5 2 10 1 6 8 
8 7 4 1 3 6 5 2 1 0 9 
2 5 7 9 1 8 1 0 3 6 4 
6 1 3 9 7 10 5 2 8 4 
5 9 2 6 8 3 1 7 1 0 4 

0.9 
2.1 
0.9 
2.1 
3.7 
4.1 
2.5 
3.6 
3.6 
3.9 

+9 
+7 
-9 
-7 
+3 
-1 
-3 
+3 
-1 
+1 

1 
2 
1 
2 
3 
4 
2 
3 
3 
4 

1.2 
1.1 
1.2 
1.1 
0.4 

-
1.1 
0.4 
0.4 

-

1592 
1559 
1567 
1547 
1765 
1788 
1678 
1686 
1654 
1545 

'.1337 

Each solution is evaluated for its deviation and spread 
as given in columns 2 and 3. Column 4 gives the cluster 
to which the solution belongs, and column 5 gives the 
value of CA by which each cluster is separated from 
each other. The graphical representation is given in Fig 
2. 
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The second controlling factor is the Cluster Edge CE. 
Whereas CA is the mapping of individual solutions, CE 

is the measure of the entire population. CE is the 
measure of the deviation of the fitness of the population 
and to prevent the population from stagnating to any 
fitness minima. 

3.2. Selection and Deletion 

Selection of the next generation is based on a tier-based 
system. If the new solution improves on the global 
minima, it is then accepted in the solution. Otherwise, 
competing clusters jokey for the new solution. Initially 
the solution is mapped for its deviation. This deviation 
is then mapped to the corresponding cluster. 
Within the cluster, the placement of the solution is 
evaluated. If the new solution corresponds to an existing 
solution, or reduces the threshold CA value of the 
cluster, then it is discarded. 
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Fig. 2: Graphical representation of population 

The solution is accepted if it improves on the CA value 
of the cluster (hence improving diversity) and also to 
balance the CE. If the cluster has less than average 
solutions, then the new solution is admitted. 
Table 4 gives the selection criteria. 

Table 4. Selection criteria 
Variables Criteria 
Fitness 
CA 

CE 

Improves clusters best solution 
Increases the value of CA 

Decreases 

Once the solution is added to the cluster, another 
solution can be discarded. This solution is usually 
elected from the middle placed solutions in the cluster, 
whose fitness is not in the top 5% of the population. If 
no such solutions exist, then the average rated solution 
is removed. Solution with high Life and low Offspring 
are discarded, since they are considered dormant within 
the cluster. 

Life 
Offspring 
CA 

High 
Low 
Decreases 

4. Self Organising Migrating Algorithm 

SOMA [3], is based on the competitive-cooperative 
behaviour of intelligent creatures solving a common 
problem. 
In SOMA, individual solutions reside in the optimized 
model's hyperspace, looking for the best solution. It can 
be said, that this kind of behaviour of intelligent 
individuals allows SOMA to realize very successful 
searches. 
Because SOMA uses the philosophy of competition and 
cooperation, the variants of SOMA are called strategies. 
They differ in the way as to how the individuals affect 
all others. The best operating strategy is called 
'AllToAll' and consists of the following steps: 

1. Definition of parameters. Before execution, the 
SOMA parameters (PathLength, Step, PRT, 
Migrations see Table 6) are defined. 

2. Creating of population. The population SP is 
created and subdivided into clusters. 

3. Migration loop. 
3.1. Each individual is evaluated by the cost 

function 
3.2. For each individual the PRT Vector is created. 
3.3. All individuals, perform their run towards the 

randomly selected solution in the opposing 
cluster according to equation (7). Each solution 
is selected from individual cluster piecewise. 
The movement consists of jumps determined 
by the Step parameter until the individual 
reaches the final position given by the 
PathLength parameter. For each step, the cost 
function for the actual position is evaluated 
and the best value is saved. Then, the 
individual returns to the position, where it 
found the best-cost value on its trajectory. 

The schematic of SOMA with clustered population is 
given in Fig 3. SOMA, like other evolutionary 
algorithms, is controlled by a number of parameters, 
which are predefined. They are presented in Table 6. 

Table 6. SOMA Parameters 
Name Range T y p e 

Table 5. Deletion criteria 

PathLength (1 .1-3) Control 
StepSize (0 .11 - PathLength) Control 
PRT ( 0 - 1 ) Control 

4.1. Mutation 

Mutation, the random perturbation of individuals, is 
applied differently in SOMA compared with other ES 
strategies. SOMA uses a parameter called PRT to 
achieve perturbation. It is defined in the range [0, 1] and 
is used to create a perturbation vector (PRT Vector) as 
follows: 

Variables Criteria 
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if rnd. < PRT then PRTVector, = 1 
j
 J J 

elseO, j = !,...,n 

Fig. 3: SOMA migration utilizing clustered 
population 

The novelty of this approach is that the PRT Vector is 
created before an individual starts its journey over the 
search space. The PRT Vector defines the final 
movement of an active individual in search space. 
The randomly generated binary perturbation vector 
controls the allowed dimensions for an individual. If an 
element of the perturbation vector is set to zero, then the 
individual is not allowed to change its position in the 
corresponding dimension. 

4.2. Crossover 

In standard metaheuristics, the Crossover operator 
usually creates new individuals based on information 
from the previous generation. Geometrically speaking, 
new positions are selected from an N dimensional 
hyper-plane. In SOMA, which is based on the 
simulation of cooperative behaviour of intelligent 
beings, sequences of new positions in the TV-
dimensional hyperplane are generated. The movement 
of an individual is thus given as follows: 

-» -» -» -» 
r = r0+ m tPRT Vector ^ 

where: 
r : new candidate solution 
r0: original individual 

m: difference between leader and start position of 
individual 

t\ e [0 , Path length] 
PRTVector. control vector for perturbation 

It can be observed from Equation (7) that the PRT 
vector causes an individual to move toward the leading 
individual (the one with the best fitness) in N-k 
dimensional space. If all N elements of the PRT vector 
are set to 1, then the search process is carried out in an 

N dimensional hyperplane (i.e. on a 7V+1 fitness 
landscape). If some elements of the PRT vector are set 
to 0 then the second terms on the right-hand side of 
Equation (7) equal 0. This means those parameters of an 
The number of frozen parameters, k, is simply the 
number of dimensions that are not taking part in the 
actual search process. 
For each individual, once the final placement is 
obtained, the values are re-converted into integer format 
through rounding and repairement process. 

4.3. Repairment procedure 

The repairment process [4] is given in a number of 
routines. The first routine is to check the entire solution 
for repeated values. These repeated values and their 
positions are isolated in a replicated array 
xrePi ~ Ycj,Xj+n,....,X ?. The second routine is to find 

which values are missing from the solutions given as 

xmb={l^n}n{xvx29 ,xH}. 
Since, the replicated array contains a number of 
sequences of replicated solutions, randomly one 
solution in each sequence is labelled as feasible and 
repatriated back into the main solution. This leaves the 
replicated array containing only infeasible values. 
Randomly each value is selected from the missing array 
and inserted in the position of a replicated value in the 

random 

replicated array xmis -> xrepl. 

Finally, the replicated array is reinserted in the solution 
array with all values now feasible X l —» X. 

5. Dynamic Clustering 

The selection and crossover criteria have now been 
outlined. After each migration, the clusters are 
reconfigured. Since, in all heuristics, there is a tendency 
to converge, it is imperative to keep the solutions 
unique. 
The procedure is to calculate the deviation of the new 
solutions. Since a mesh may exist, it is feasible to 
reconfigure certain boundary solutions. Fig 4 can be a 
representation of a SP. 
A mutation routine is used to reconfigure a solution. By 
altering certain positions within the solution, it is 
possible to realign the deviation and spread of the 
solution. Boundary values within the solutions (usually 
represented by the upper and lower bound of the 
solution) are swapped. Another approach is to have two 
random positions generated and the values in these 
positions swapped. An illustration is given to describe 
this process in Table 7 and Fig 5-6. 
Once the boundary values are re-aligned, the second 
migration loop occurs. 

Table 7. Swap of boundary values 
Solution Deviation Spread 
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1 0 9 6 5 2 1 8 7 4 3 2.1 -7 
1 9 6 5 2 1 0 8 7 4 3 3.0 -5 

• 

• 

o 

o 

o 

Best 

o 

o 

o 

o 

o 

• 

• 
• 

• 

• 
• 

Deviation solution space 

Fig. 4 Solution space after migration 

Fuzzy Cluster Boundary 

Deviation solution space 

Fig. 5 Fuzzy clustering and boundary solution 
isolation. 

6. General Template 

Collating all the piecewise explanation, a general 
generic template is now described. 

1. Generate: Randomly create SPrand, half the size 

of Psize, and then structurally create SPstruc. 

These two form the basis of the population. 

2. Calculate the deviation and spread of each 
solution in the population. Taking take 
deviation values, configure the population into 
four clusters. The minimal separation value 
between the clusters is assigned as CA Taking 
the entire SP, the standard deviation of the 
fitness is computed. This is labelled as the CE 

3. Generation/Migration 

4.1 Taking each SP in turn, the selected 
heuristic of SOMA is applied to the 
population. 

4.2 The new solution is calculated for its 
deviation and spread. 

4.3 Using the selection criteria, the solution is 
placed within the cluster corresponding to 
its deviation. If replicated solutions exist, 
then it is discarded. Selection is based on 
fitness and the move of the CA and CE. 

5. The SP is re-calculated for its cluster 
boundaries. 

6. If the value of CA has deceased, then the 
boundary solutions are reconfigured. The CE 

value is calculated for the new population. 

o 

_---

• 

o 

o 

Disc 

• 

Best 

o 

• 

o 

'ete Cluster 

A 

/ x 

/ 

Boundary 

o 

o 

• • 

• 

• 

• 

• 

Deviation solution space 

Fig. 6 Realigned solutions into discrete clusters. 

The graphical representation is given in Fig 7. 

7. Quadratic Assignment Problem 

QAP is a TVP-hard optimization problem [5]. It is 
considered as one of the hardest optimization problems 
as general instances of size n > 20 cannot be solved to 
optimally [6]. 
It can be described as follows: Given two matrices 

^ = ( a , ) a n d 5 = (Z>,) 

find the permutation n minimizing 

i=\ y=l 

(8) 

where n 6 ? ) is a set of permutations of n elements. 

The problem instances selected for the QAP are from 
the OR Library and reported in [7]. There are two 
separate problem modules; regular and irregular. 
The difference between regular and irregular problems 
is based on the flow-dominance (fd). Irregular problems 
have a flow-dominance statistics larger than 1.2. Most 
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of the problems come from practical applications or 
have been randomly generated with non-uniform laws, 
imitating the distributions observed on real world 
problems. 
Fd is defined as a coefficient of variation of the flow 
matrix entries multiplied by 100. That is: 

fd = l00cr/ 

(9) 
where: 

Table 8. SOMA operating parameters 

Parameter Value 

(10) 

1 
'ZM 

1.Input: n,P ,SP, ,,SP d,CA<E{OA,l+),CE,Gen 

2. Initialize: SPm 

Vi ^ P^/2 A V/a«:x tJ jGm0 = rand;[0,l]-(*f] - xf]) 

i - 11,2,.., ske/2 \,j - {1,2,...,n},G - 0,ra™/.[0,l]e[0,l] 

^ = P ^ ; z 3 m a x ( | ( l + 2!+... + z!)j *k;xascmd -{*<">,.,*<* 

x =lxl>,i) x{h]] 
^descend \ A ' " ' A J 

VLc. - * , . . 

:JC; E^X,,JC, , . . ,X„ 

Spread d= 
+ 1 if (*•_,-xj :> 1 

-1 ^(JC^-JEJSI 

cJ=(a1.a2,..A!)»(a(l5).,,a(,!).2,..,a2|.5))-...-(^!l.,A,g.-A) 

C£ = s fd l /^M:x , E.\x1,x2,...,xP > 

4. While G < Gmnx for each SP 

5. Mutate and recombine: 

5.1 Calculate <5 and 3 of w. G+1 

6. Select 

( "i.G + l ^ /(»i,G+l)S/(*fe«) 

";.c+i
 i f >CA 

xiC otherwise 
7. Calculate CA,CE 

8. Dynamic clustering 

Fig. 7 Graphical representation of clustering. 

>YLh-»1 ( i i ) 

8. Results 

The operating parameters of SOMA are given in Table 
8. The results of clustered SOMA applied to the QAP 
problems as given in Tables 9 and 10. The main 
comparison is done with SOMA without clustering of 
[8]. 
In all problem instances, SOMA with clustering 
improved on the values obtained for SOMA without 
clustering. 

Strategy 

Step Size 

PathLength 

Population 

Migration 

All-to-All 

0.21 

3 

500 - 1000 

500 - 1000 

Table 9: SOMAC|USt Irregular QAP comparison 
Instan „ _ ,. , SOMA[8 SOMAclus 

fd n Optimal j 

bur26a 

bur26b 

bur26c 

bur26d 

bur26e 

bur26f 

bur26g 

bur26h 

chr25a 

els 19 

kra30a 

kra30b 

tai20b 

tai25b 

tai30b 

tai35b 

tai40b 

tai50b 

tai60b 

tai80b 

2.7 
5 
2.7 
5 
2.2 
9 
2.2 
9 
2.5 
5 
2.5 
5 
2.8 
4 
2.8 
4 
4.1 
5 
5.1 
6 
1.4 
6 
1.4 
6 
3.2 
4 
3.0 
3 
3.1 
8 
3.0 
5 
3.1 
3 

3.1 

3.1 
5 
3.2 
1 

2 
6 
2 
6 
2 
6 
2 
6 
2 
6 
2 
6 
2 
6 
2 
6 
2 
6 
1 
9 
3 
0 
3 
0 
2 
0 
2 
5 
3 
0 
3 
5 
4 
0 
5 
0 
6 
0 
8 
0 

5246670 

3817852 

5426795 

3821225 

5386879 

3782044 

10117172 

7098658 

3796 

17212548 

88900 

91420 

12245531 
9 
34435564 
6 
63711711 
3 
28331544 
5 
63725094 
8 
45882151 
7 
60821505 
4 
81841504 
3 

0 

0 

0 

0 

0 

0.03 

0 

0 

0.129 

0 

0.002 

0.03 

0.004 

0 

0.043 

0 

0.02 

0.2 

0.5 

0.8 

0 

0 

0 

0 

0 

0.01 

0 

0 

0.10 

0 

0.002 

0.027 

0 

0 

0 

0 

0 

0.2 

0.2 

0.4 

Table 10: 
Instan 
t 

nug20 

fd 

0.9 
9 

SOMAC|USt Regular 

n 

2 
0 

Optimal 

2570 

QAP corr 
SOMA[8 

] 

0 

iparison 
SOMAclus 

t 

0 
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nug30 

sko42 

sko49 

sko56 

sko64 

sko72 

sko81 

tai20a 

tai25a 

tai30a 

tai35a 

tai40a 

tai50a 

tai60a 

tai80a 

wil50 

nug20 

nug30 

sko42 

1.0 
9 
1.0 
6 
1.0 
7 
1.0 
9 
1.0 
7 
1.0 
6 
1.0 
5 
0.6 
1 

0.6 

0.5 
9 
0.5 
8 

0.6 

0.6 

0.6 

0.5 
9 
0.6 
4 
0.9 
9 
1.0 
9 
1.0 
6 

6124 

15812 

23386 

34458 

48498 

66256 

90998 

703482 

1167256 

1818146 

2422002 

3139370 

4941410 

7208572 

1355786 
4 

48816 

2570 

6124 

15812 

0.02 

0.01 

0.005 

0.01 

0.06 

0.2 

0.35 

0 

0 

0.01 

0.03 

0.623 

0.645 

0.62 

1.05 

0 

0 

0.02 

0.01 

0 

0 

0 

0 

0.02 

0.04 

0.05 

0 

0 

0 

0 

0.58 

0.42 

0.62 

0.95 

0 

0 

0 

0 

and Tabu Search (IASA-TS) of [14] and Ant Colony 
(HAS) of [7]. The results are given in Table 12. 
As with the previous instances, SOMAdmt is the best 
performing heuristic with 10 best solutions, all of which 
are optimal values of those particular problems. 
In terms of population dynamics, consider the initial 
population clustering of a sample population of 
"bur26a" instance as given in Fig 8. 
The final population clustering is given in Fig 9. The 
deviation of the solutions is from 1 - 2.75 in the initial 
population and 4 - 9 in the final population. This shows 
a drift of the solutions in the deviation space. Another 
point of interest is that the solutions are still diversified 
in their sructure. The solutions within the clusters have 
converged, however the overall diversity is maintained 
within the population. This opens more oppertunity to 
obtain better solutions in next generations. 
The spread of the solutions in given in Fig 10. 
The Cluster Edge. CE of the population throughout the 
population generation (in this case, 100 generations) is 
given in Fig 11. A general decline of the spread of the 
clusters and fitness values is seen. This is typical for a 
minimising function. The final graph of the best 
individual is seen in Fig 12. 

Table 11. Irregular QAP comparison 
Instan 
t 

fd n Optimal GA R A S SOMAclus 

9. Analysis and Conclusion 

Comparison of the obtained results is done with some 
published heuristics. The first comparison is done with 
the irregular QAP instances. SOMAdust is compared with 
the Improved Hybrid Genetic Algorithm {GAX) of [9] 
and the highly refereed Ant Colony approach (HAS) of 
[7] given in Table 11. 
The best performing algorithm is SOMAdust which 
obtains the best comparitive result in 13 out of 20 
problem instances. The hybrid Genetic Algorithm 
appproach however is able to find the optimal result in 
the two instances that it is applied, where the other 
heuristics are not so effective. 
The second set of comparison is done with the regular 
QAP instances. Comparison of the clustered SOMA is 
done with the GA (GAi ) approach of [9], greedy GA 
(GA^eedy ) of [10], GA (GA2) of [11], Simulated 
Annealing algorithm (TB2M) of [12], Robust Tabu 
Search (RTS) of [13], Combined Simulated Annealing 

bur26a 

bur26b 

bur26c 

bur26d 

bur26e 

bur26f 

bur26g 

bur26h 

chr25a 

els 19 

kra30a 

kra30b 

tai20b 

tai25b 

tai30b 

tai35b 

2.7 
5 
2.7 
5 
2.2 
9 
2.2 
9 
2.5 
5 
2.5 
5 
2.8 
4 
2.8 
4 
4.1 
5 
5.1 
6 
1.4 
6 
1.4 
6 
3.2 
4 
3.0 
3 
3.1 
8 
3.0 

5246670 

3817852 

5426795 

3821225 

5386879 

3782044 

10117172 

7098658 

3796 

17212548 

88900 

91420 

12245531 
9 
34435564 
6 
63711711 
3 
28331544 

0 

0 

0 

0 

0 

0 

0 

0 

3.08 
2 

0 

0.62 
9 
0.07 
1 
0.09 
1 

0 

0 

0.02 

0 

0 

0 

0 

0 

0.01 

0 

0 

0.10 

0 

0.002 

0.027 

0 

0 

0 

0 
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tai40b 

tai50b 

tai60b 

5 
3.1 
3 

3.1 

3.1 

5 
4 
0 
5 
0 
6 

5 
63725094 
8 
45882151 
7 
60821505 -

5 

0 

0.19 
2 
0.04 

0 t 

0.2 

0.2 

tai80b 
3.2 8 81841504 
1 0 3 

0.66 0.4 

Table 12. Regular QAP comparison 

Instan 
t 

fd Optimal GAX GAGre GA2 
TB2 
M 

RTS l A ^ HAS SOMAclust 

nug20 

nug30 

sko42 

sko49 

sko56 

sko64 

sko72 

sko81 

tai20a 

tai25a 

tai30a 

tai35a 

tai40a 

tai50a 

tai60a 

tai80a 

0.99 

1.09 

1.06 

1.07 

1.09 

1.07 

1.06 

1.05 

0.61 

0.6 

0.59 

0.58 

0.6 

0.6 

0.6 

0.59 

20 

30 

42 

49 

56 

64 

72 

81 

20 

25 

30 

35 

40 

50 

60 

80 

2570 

6124 

15812 

23386 

34458 

48498 

66256 

90998 

703482 

1167256 

1818146 

2422002 

3139370 

4941410 

7208572 

13557864 

-

0 

0 

0.03 
8 

0 

0 

0.04 
2 
0.06 
7 

-

-

-

-

-

-

-

-

-

0.07 

0.250 

0.210 

0.02 

0.22 

0.29 

0.2 

-

-

-

-

-

-

-

-

0 

0 

0.00 
9 
0.00 
1 

0 

0.01 
4 
0.01 
4 

-

-

-

-

-

-

-

-

-

0.94 

0.66 

0.67 

0.66 

0.57 

0.60 

0.46 

-

-

-

-

-

-

-

-

0.73 

1.03 

0.54 

0.53 

0.93 

0.52 

0.41 

-

-

-

-

-

-

-

-

-

0.52 

0.46 

0.46 

0.50 

0.45 

0.48 

0.40 

-

-

-

-

-

-

-

-

0 
0.09 
8 
0.07 
6 
0.14 
1 
0.10 
1 
0.50 
4 
0.70 
2 
0.49 
3 
0.67 
5 
1.18 
9 
1.31 
1 
1.76 
2 
1.98 
9 
2.8 
0.31 
3 
1.10 
8 

0 

0 

0 

0 

0 

0.02 

0.04 

0.05 

0 

0 

0 

0 

0.58 

0.42 

0.62 

0.95 

A direct correlation is seen between the graphs of 
Cluster Edge and Best Individual. The Edge is a prelude 
to a shift in solution space. A shift generally signifies a 
region of new solutions, and possibility of further 
improvement. 
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