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a b s t r a c t

Chaos driven Differential Evolution algorithm and Self-OrganizingMigrating Algorithm are
presented in this paper for the task of PID (Proportional–Integral–Derivative) controller
optimization. The dissipative chaotic Lozi map is embedded as a number generator inside
DE and SOMA in order to avoid local optima stagnation and embed a superior search
strategy. Three unique PID controller problems are presented and successfully resolved
using these new approaches. The obtained results compare favorably with published
results.
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1. Introduction

A Proportional–Integral–Derivative (PID) controller is a three-term controller that has a long history in the automatic
control field, starting from the beginning of the last century [1]. Owing to its intuitiveness and its relative simplicity, in
addition to satisfactory performance which it is able to provide with a wide range of processes, it has become in practice the
standard controller in industrial settings.
Evolutionary design and synthesis of PID controllers is a recent manifestation. Evolutionary algorithms (EAs) are

considered as a powerful set of tools in the task of any complex optimization. EAs arose with the advent of computers
and has now evolved into a very complex set of algorithms. Almost all conceived natural occurring phenomena have been
translated into a set of evolutionary heuristics. These heuristics in turn have been applied to the task of PID controller design
in its various formats. Chang [2] developed a new variant of Genetic Algorithm (GA) [3] for PID tuning, whereas Yachen and
Yueming [4] developed a Simulated Annealing (SA) [5] approach. Dong [6] and Chakraborty [7] during the past few years
have compared the performances of Differential Evolution (DE) and Particle Swarm Optimization (PSO) [8] in the task of PID
controller design. Further application can be found in [9–11] amongst others.
This research deals with the application of EAs driven by chaotic maps in PID controller design. Recent research in chaos

driven heuristics has been fueled with the predisposition that unlike stochastic approaches, a chaotic approach is able to
bypass local optima stagnation. This one clause is of deep importance to EAs. A chaotic approach generally uses the chaotic
map in the place of a random number generator [12]. This causes the heuristic to map unique regions, since the chaotic map
iterates to new regions. The onus is then to select a very good chaotic map as the random generator.
Davendra and Zelinka [13] embedded chaotic maps inside DE and compared the performance of canonical and chaos

mutated DE in PID controller design. The results confirmed that chaos driven DE performs better than canonical DE over
a set of PID problems. This paper builds on the previous work of Davendra and Zelinka [13] with the application of chaos
driven Self Organizing Migrating Algorithm (SOMA).
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This paper is divided into the following parts. Sections 2 and 3 introduces the basic principles of PID specifications
and controller tuning. Section 4 describes DE and SOMA. Section 5 gives the mathematical description of the Lozi Map.
Section 6 gives the experimentation results of the three attempted PID controller tuning problems and finally, in Section 7
the conclusions are presented.

2. PID controller

The PID controller contains three unique parts; proportional, integral and derivative controller [14]. The following
sections gives a brief description of the different components.

2.1. Proportional algorithm

The mathematical representation is given as,

mv(s)
e(s)

= kc (1)

in the Laplace domain or as,
mv(t) = mvss + kce(t) (2)

in the time domain.
The proportional mode adjusts the output signal in direct proportion to the controller input (which is the error signal, e).

The adjustable parameter to be specified is the controller gain, kc . The larger the kc , the more the controller output will
change for a given error [14].

2.2. Proportional integral algorithm

The mathematical representation is given as,

mv(s)
e(s)

= kc

[
1+

1
Tis

]
(3)

in the Laplace domain or as,

mv(t) = mvss + kc

[
e(t)+

1
Ti

∫
e(t)dt

]
(4)

in the time domain.
The additional integral mode corrects for any offset (error) that may occur between the desired value (setpoint) and

the process output automatically over time. The adjustable parameter to be specified is the integral time (Ti) of the
controller [14].

2.3. Proportional integral derivative algorithm

The mathematical representation is given as,

mv(s)
e(s)

= kc

[
1+

1
Tis
+ TDs

]
(5)

in the Laplace domain or as,

mv(t) = mvss + kc

[
e(t)+

1
Ti

∫
e(t)dt + TD

de(t)
dt

]
. (6)

Derivative action anticipateswhere the process is heading, by looking at the time rate of change of the controlled variable
(its derivative). TD is the ‘rate time’ and this characterizes the derivative action (with units of minutes).
The parallel PID controller is given as in Eq. (7).

mv(s) = kce(s)+
1
Tis
e(s)+ TDse(s). (7)

A further alternative simplified form is given in Eq. (8).

G(s) = K
(
1+

1
sTi
+ sTd

)
. (8)

The PID form most suitable for analytical calculations is given in Eq. (9).

G(s) = k+
ki
s
+ skd. (9)
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The parameters are related to the standard form through: k = K , ki = K
Ti
and kd = KTd.

The advantage is that the parameters appear linearly and it is possible to obtain pure proportional, integral, or derivative
action by finite values of the parameters.

3. Controller tuning

Controller tuning involves the selection of the best values of kc , Ti and TD. This is often a subjective procedure and is
certainly process dependent.When tuning a PID algorithm, generally the aim is tomatch some preconceived ‘ideal’ response
profile for the closed loop system. The following response profiles are typical [15].
1. Overshoot: this is themagnitude bywhich the controlled ‘variable swings’ past the setpoint. 5%/10%overshoot is normally
acceptable for most loops.

2. Rise time: the time it takes for the process output to achieve the new desired value. One-third the dominant process time
constant would be typical.

3. Decay ratio: this is the ratio of the maximum amplitude of successive oscillations.
4. Settling time: the time it takes for the process output to die to between, say±5% of setpoint.

3.1. Optimization specifications

The properties of the transfer functions can also be based on integral criteria [11]. Let e(t) be the error caused by reference
values or disturbances and let u(t) be the corresponding control signal. The performance index is calculated over a time
interval; T, normally in the region of 0 ≤ T ≤ ts where ts is the settling time of the system. The following performance
indices are of note:

3.1.1. Integral of time multiplied by absolute error (ITAE)

IITAE =
∫ T

0
t |e(t)| dt. (10)

The ITAE weights the error with time and hence emphasizes the error values later on in the response rather than the
initial large errors.

3.1.2. Integral of absolute magnitude of the error (IAE)

IIAE =
∫ T

0
|e(t)| dt. (11)

IAE gets the absolute value of the error to remove negative error components. IAE is good for simulation studies.

3.1.3. Integral of the square of the error (ISE)

IISE =
∫ T

0
e2(t)dt. (12)

The ISE squares the error to remove negative error components. ISE discriminates between over-damped and under
damped systems, i.e. a compromise minimizes the ISE.

3.1.4. Mean of the square of the error (MSE)

IMSE =
1
n

n∑
i=1

(e(t))2. (13)

MSE reflects all variation and deviation from the target value.

4. Evolutionary algorithms

4.1. Differential Evolution

DE [16] is a stochastic heuristic which uses vector differentials between solutions as a means of propagation.
In order to describe DE, a schematic is given in Fig. 1.
There are essentially five sections to the code. Section 1 describes the input to the heuristic. D is the size of the problem,

Gmax is the maximum number of generations, NP is the total number of solutions, F is the scaling factor of the solution and
CR is the factor for crossover. F and CR together make the internal tuning parameters for the heuristic.
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Fig. 1. Differential Evolution algorithm.

Section 2 outlines the initialization of the heuristic. Each solution xi,j,G=0 is created randomly between the two bounds
x(lo) and x(hi). The parameter j represents the index to the values within the solution and i indexes the solutions within the
population. So, to illustrate, x4,2,0 represents the second value of the fourth solution at the initial generation.
After initialization, the population is subjected to repeated iterations in Section 3.
Section 4 describes the conversion routines of DE. Initially, three random numbers r1, r2, r3 are selected, unique to each

other and to the current indexed solution i in the population in 4.1. Henceforth, a new index jrand is selected in the solution.
jrand points to the value being modified in the solution as given in 4.2. In 4.3, two solutions, xj,r1,G and xj,r2,G are selected
through the index r1 and r2 and their values subtracted. This value is thenmultiplied by F , the predefined scaling factor. This
is added to the value indexed by r3.
However, this solution is not arbitrarily accepted in the solution. A new random number is generated, and if this random

number is less than the value of CR, then the new value replaces the old value in the current solution. Once all the values in
the solution are obtained, the new solution is vetted for its fitness or value and if this improves on the value of the previous
solution, the new solution replaces the previous solution in the population. Hence the competition is only between the new
child solution and its parent solution.
Price [16] has suggested ten different working strategies. It mainly depends on the problem on hand for which strategy

to choose. The strategies vary on the solutions to be perturbed, number of differing solutions considered for perturbation,
and finally the type of crossover used. The following are the different strategies being applied.

1: DE/best/1/exp: ui,G+1 =xbest,G + F •
(
xr1,G − xr2,G

)
2: DE/rand/1/exp: ui,G+1 = xr1,G + F •

(
xr2,G − xr3,G

)
3: DE/rand-best/1/exp: ui,G+1 = xi,G + λ •

(
xbest,G − xr1,G

)
+ F •

(
xr1,G − xr2,G

)
4: DE/best/2/exp: ui,G+1 = xbest,G + F •

(
xr1,G − xr2,G − xr3,G − xr4,G

)
5: DE/rand/2/exp: ui,G+1 = x5,G + F •

(
xr1,G − xr2,G − xr3,G − xr4,G

)
6: DE/best/1/bin: ui,G+1 =xbest,G + F •

(
xr1,G − xr2,G

)
7: DE/rand/1/bin: ui,G+1 = xr1,G + F •

(
xr2,G − xr3,G

)
8: DE/rand-best/1/bin: ui,G+1 = xi,G + λ •

(
xbest,G − xr1,G

)
+ F •

(
xr1,G − xr2,G

)
9: DE/best/2/bin: ui,G+1 = xbest,G + F •

(
xr1,G − xr2,G − xr3,G − xr4,G

)
10: DE/rand/2/bin: ui,G+1 = x5,G + F •

(
xr1,G − xr2,G − xr3,G − xr4,G

)
.

The convention shown is DE/x/y/z. DE stands for Differential Evolution, x represents a string denoting the solution to be
perturbed, y is the number of difference solutions considered for perturbation of x, and z is the type of crossover being used
(exp: exponential; bin: binomial).
DE has two main phases of crossover: binomial and exponential. Generally, a child solution ui,G+1 is either taken from

the parent solution xi,G or from a mutated donor solution vi,G+1 as shown : uj,i,G+1 = vj,i,G+1 = xj,r3,G + F • (xj,r1,G − xj,r2,G).
The frequency with which the donor solution vi,G+1 is chosen over the parent solution xi,G as the source of the child

solution is controlled by both phases of crossover. This is achieved through a user defined constant, crossover CR which is
held constant throughout the execution of the heuristic.
The binomial scheme takes parameters from the donor solution every time that the generated random number is less

than the CR as given by randj[0, 1] < CR, else all parameters come from the parent solution xi,G.
The exponential scheme takes the child solutions from xi,G until the first time that the random number is greater than CR,

as given by randj[0, 1] < CR, otherwise the parameters comes from the parent solution xi,G.
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To ensure that each child solution differs from the parent solution, both the exponential and binomial schemes take at
least one value from the mutated donor solution vi,G+1.

4.2. Self organizing migrating algorithm

SOMA is a stochastic optimization algorithmmodeled on the social networking behavior of co-operating individuals [17].
It was chosen because it has been proven that the algorithm has the ability to converge towards the global optimum
[17,18].
SOMA works on a population of candidate solutions in loops called migration loops or generation loops. The population

is initialized randomly which gives it a distribution over the search space at the beginning of the search. In each loop, the
population is evaluated and the solutionwith the highest fitness becomes the leader. Apart from the leader, in onemigration
loop, all individuals will traverse the input solution space in the direction of the leader.
An individual will travel a certain distance (called the path length) towards the leader in n steps of defined length or step

size. If the path length is chosen to be greater than one, then the individual will overshoot the leader. This path is perturbed
randomly.

4.3. Perturbation

Mutation, the random perturbation of individuals, is an important operation for evolutionary strategies (ES). It ensures
the diversity amongst the individuals and it also provides the means to restore lost information in a population. Mutation
however is applied differently in SOMA compared with other ES strategies. SOMA uses a parameter called PRT to achieve
perturbation. This parameter has the same effect for SOMA as mutation has for GA. It is defined in the range [0, 1] and is
used to create a perturbation vector (PRT Vector) as follows:

if randj < PRT then PRT Vectorj = 1
else 0, j = 1, . . . , n. (14)

The novelty of this approach is that the PRT Vector is created before an individual starts its journey over the search space.
The PRT Vector defines the final movement of an active individual in search space.
The randomly generated binary perturbation vector controls the allowed dimensions for an individual. If an element

of the perturbation vector is set to zero, then the individual is not allowed to change its position in the corresponding
dimension.

4.4. Generating new candidate solutions

In standard ES the Crossover operator usually creates new individuals based on information from the previous generation.
Geometrically speaking, new positions are selected from an N dimensional hyper-plane. In SOMA, which is based on the
simulation of cooperative behavior of intelligent beings, sequences of new positions in the N-dimensional hyperplane are
generated. They can be thought of as a series of new individuals obtained by the special crossover operation. This crossover
operation determines the behavior of SOMA. The movement of an individual is thus given as follows:

Er = Er0 + Emt PRTVector (15)
where:
• Er: new candidate solution.
• Er0: original individual.
• Em: difference between leader and start position of individual.
• t :∈ [0, Path length].
• PRT Vector: control vector for perturbation.

It can be observed from Eq. (15) that the PRT vector causes an individual to move toward the leading individual (the one
with the best fitness) in N − k dimensional space. If all N elements of the PRT vector are set to 1, then the search process is
carried out in an N dimensional hyperplane (i.e. on a N + 1 fitness landscape). If some elements of the PRT vector are set to
0 then the second terms on the right-hand side of Eq. (15) equals 0. This means those parameters of an individual that are
related to 0 in the PRT vector are ‘frozen’, i.e. not changed during the search. The number of frozen parameters, k, is simply
the number of dimensions that are not taking part in the actual search process. Therefore, the search process takes place in
an N − k dimensional subspace.

5. Chaotic maps

The Lozimap is a two-dimensional piecewise linearmapwhosedynamics are similar to those of the better knownHennon
map [19] and it admits strange attractors.
The advantage of the Lozi map is that one can compute every relevant parameter exactly, due to the linearity of the map,

and the successful control can be demonstrated rigorously.
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Fig. 2. Lozi map.

Table 1
DEchaos operating parameters.

Parameters Values

F 0.8
CR 0.9
PopSize 100
Generation 100

The Lozi map equations are given in Eqs. (16) and (17).

y1(t + 1) = 1− a |y1(t)| + y2(t) (16)
y2(t + 1) = by1(t). (17)

The parameters used in this work are a = 1.7 and b = 0.5 as suggested in [20]. The Lozi map is given in Fig. 2.

6. Results

Experimentation consisted of three systems. The first is the third order system, followed by the fourth order ‘‘Ball and
Hoop’’ system [11] and finally the ‘‘Electric DCmotor’’ system [9]. Two unique heuristics of DEchaos and SOMAchaos are utilized
and the results are compared with the Ziegler–Nichols (ZN) controller. In two instances the results are also compared with
published heuristics for that specific problem.
Each experimentation consisted of the maximization of the inverse of the four optimization specifications given in

Section 3.1. All four specifications have been used in order to give a balanced result.
The operating parameters for bothDEchaos and SOMAchaoswere obtainedheuristically, over a number of experimentations.

6.1. Third order system

The first problem is a third order system. The plant transfer function is given as:

G(s) =
0.1

s(3s+ 1)(0.8s+ 1)
. (18)

DEchaos and SOMAchaos operating parameters are given in Tables 1 and 2. These parameters were kept consistent with all
the three experimentations.
The objective function values of the four optimization specifications is given in Table 3 for DEchaos and Table 4 for

SOMAchaos.
From the optimization values of kp, ki and kd, the steady state responses of DEchaos and SOMAchaos are calculated and given

in Table 5. The highlighted values present the optimal value for that specification. When compared to the Ziegler Nichols
method, DEchaos obtains better performance indices peak overshoot whereas SOMAchaos obtains better results for rise time
and settling time.
The system responses for DEchaos for the four different errors is given in Figs. 3–6 and for SOMAchaos in Figs. 7–10.
The combined results of the four different error specifications for DEchaos and SOMAchaos is given in Figs. 11 and 12.
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Table 2
SOMAchaos operating parameters.

Parameters Values

Strategy All-to-all
PRT 3.0
Stepsize 0.21
Solutions 20
Migrations 20

Table 3
DEchaos objective function values for third order system.

Parameters Values kp ki kD

IAE 0.0811 5.856 0.0043 11.853
ISE 0.1561 5.204 0.1568 20.804
ITAE 0.0658 4.843 0.00025 7.0234
MSE 31.224 5.2048 0.1568 20.8041

Table 4
SOMAchaos objective function values for third order system.

Parameters Values kp ki kD

IAE 0.0688 33.477 0.0799 148.74
ISE 0.2605 5.248 1.135 150
ITAE 0.2605 5.248 1.135 150
MSE 0.2605 5.248 1.135 150

Table 5
DEchaos and SOMAchaos steady state responses for third order system.

Specifications Z–N DEchaos SOMAchaos
IAE ISE ITAE MSE IAE ISE ITAE MSE

Overshoot 27.7602 10.441 2.561 14.36 2.561 38.98 29.6 29.6 29.6
Rise time 4.315 4.33 3.335 5.58 3.335 0.99 0.97 0.97 0.97
Settling time 20.315 10.735 26.825 13.085 26.825 5.66 41.875 41.875 41.875

Fig. 3. DEchaos system response for IAE.

6.2. Ball and hoop system

The second problem is a fourth order system comparable with the ball and hoop system [21] and presented in [11].
The Open Loop Transfer Function (OLTS) of this system [11] is given in Eq. (19).

G(s) =
1

s4 + 6s3 + 11s2 + 6s
. (19)

The objective functions values of DEchaos and SOMAchaos is given in Tables 6 and 7. The values obtained for both these
heuristics are very similar.
The interesting feature is that the values obtained for both the systems is identical. The trajectory of the two systems

encompass the same optimal value in the iterative cycle. The steady state responses of the two systems is given in Table 8.
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Fig. 4. DEchaos system response for ISE.

Fig. 5. DEchaos system response for ITAE.

Fig. 6. DEchaos system response for MSE.

Table 6
DEchaos objective function values.

Parameters Values kp ki kD

IAE 0.0811 5.856 0.0043 11.835
ISE 0.156 5.204 0.1568 20.804
ITAE 0.065 4.8436 0.00025 7.0235
MSE 31.224 5.204 0.1568 20.804

As the system responses of both the chaos map systems is the same, the plots of the different systemmeasures are given
in Figs. 13–16. The combined plot is given in Fig. 17.
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Fig. 7. SOMAchaos system response for IAE.

Fig. 8. SOMAchaos system response for ISE.

Fig. 9. SOMAchaos system response for ITAE.

Table 7
SOMAchaos objective function values.

Parameters Values kp ki kD

IAE 0.0811 5.856 0.0043 11.835
ISE 0.156 5.204 0.1568 20.804
ITAE 0.065 4.963 0.0003 7.3089
MSE 31.224 5.204 0.1568 20.804

The results obtained for DEchaos and SOMAchaos are compared with GA of [11] for the same problem. The results are
presented in Tables 9 and 10. The results obtained for both DEchaos and SOMAchaos are identical, and apart from the rise time,
the chaos variants dominates all other steady state responses over GA.
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Fig. 10. SOMAchaos system response for MSE.

Fig. 11. DEchaos combined system response.

Fig. 12. SOMAchaos combined system response.

Table 8
DEchaos and SOMAchaos steady state responses for fourth order system.

Specifications Z–N DEchaos SOMAchaos
IAE ISE ITAE MSE IAE ISE ITAE MSE

Overshoot 59.244 14.5 24.52 6.715 24.52 14.5 24.52 6.715 24.52
Rise time 2.935 1.665 1.31 2.155 1.31 1.665 1.31 2.155 1.31
Settling time 15.05 5.19 9.22 6.095 9.22 5.19 9.22 6.095 9.22

6.3. Electric DC motor system

The third problem is the Electric DC Motor [9]. The transfer function is given in Eq. (20).

G(s) =
K

LaJs3 + (RaJ + BLa)s2 + (K 2 + RaB)s
(20)
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Fig. 13. DEchaos and SOMAchaos system response for IAE.

Fig. 14. DEchaos and SOMAchaos system response for ISE.

Fig. 15. DEchaos and SOMAchaos system response for ITAE.

Table 9
Comparison of DEchaos, SOMAchaos and GA for ISE and IAE.

Specification Z–N IAE ISE
GA DEchaos SOMAchaos GA DEchaos SOMAchaos

Overshoot 59.244 44.97 14.5 14.5 28.804 24.52 24.52
Rise time 2.935 1.2 1.665 1.665 1.2 1.31 1.31
Settling time 15.05 9.3 5.19 5.19 20.4 9.22 9.22
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Fig. 16. DEchaos and SOMAchaos system response for MSE.

Fig. 17. Combined system response for DEchaos–SOMAchaos compared with Zeigler–Nicholas.

Table 10
Comparison of DEchaos, SOMAchaos and GA for ITAE and MSE.

Specification Z–N ITAE MSE
GA DEchaos SOMAchaos GA DEchaos SOMAchaos

Overshoot 59.244 57.19 6.715 6.715 28.59 24.52 24.52
Rise time 2.935 1.3 2.155 2.155 1.2 1.31 1.31
Settling time 15.05 8.2 6.095 6.095 20.4 9.22 9.22

where

La = armature inductance = 0.025
Ra = armature resistance = 5
K = motor constant = 0.9
J = motor of inertia = 0.042
B = mechanical friction = 0.01625.

The transfer function can now be resolved as in Eq. (21):

G(s) =
0.9

0.0005s3 + 0.2104s2 + 0.8913s
. (21)

The objective function values of the four specifications are given in Tables 11 and 12.
The steady state responses for DEchaos and SOMAchaos for the DC motor system are given in Table 13.
The system responses for DEchaos for the four different errors is given in Figs. 18–21 and for SOMAchaos in Figs. 22–25.
The combined results of the four different error specifications for DEchaos and SOMAchaos is given in Figs. 26 and 27.
DEchaos and SOMAchaos is compared with the tuning algorithms of Ziegler–Nichlos and Continuous Cycling (CC) and

metaheuristics of GA, Evolutionary Programming (EP) and PSO of [9].
Table 14 gives the steady state responses of all the different heuristics. DEchaos and SOMAchaos are able to produce better

results for overshoot and settling time. SOMAchaos obtains the best overshoot value whereas DEchaos has the optimal settling
time.
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Table 11
DEchaos objective function values.

Parameters Values kp ki kD

IAE 3.20351 ∗ 108 158.059 3.333 ∗ 10−10 36.505
ISE 2.5533 ∗ 1017 158.059 2.57536 ∗ 10−7 36.505
ITAE 1.3302 ∗ 109 158.059 8.2886 ∗ 10−10 36.505
MSE 5.1066 ∗ 1019 158.059 2.5711 ∗ 10−7 36.505

Table 12
SOMAchaos objective function values.

Parameters Values kp ki kD

IAE 3.2403 117.608 5.22 ∗ 10−10 27.1626
ISE 2.5531 117.607 1.416 ∗ 10−7 34.605
ITAE 275175.71 149.988 1.309 34.6411
MSE 5.106 ∗ 1019 117.607 1.379 ∗ 10−7 27.162

Table 13
DEchaos and SOMAchaos steady state responses for DC motor system.

Specifications Z–N DEchaos SOMAchaos
IAE ISE ITAE MSE IAE ISE ITAE MSE

Overshoot 41.4 11.97 11.97 11.97 11.97 6.835 6.835 10.475 6.835
Rise time 2.56 0.015 0.015 0.015 0.015 0.02 0.02 0.02 0.02
Settling time 0.242 0.035 0.035 0.035 0.035 0.04 0.04 0.035 0.04

Fig. 18. DEchaos system response for IAE.

Fig. 19. DEchaos system response for ISE.
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Fig. 20. DEchaos system response for ITAE.

Fig. 21. DEchaos system response for MSE.

Fig. 22. SOMAchaos system response for IAE.

Table 14
Comparison of steady state responses of different heuristics for the DC motor system.

Specification Z–N CC EP GA PSO DEchaos SOMAchaos

Overshoot 41.4 87.6 8.81 13 12.9 11.97 6.835
Settling time 2.56 4.31 0.205 0.324 1.15 0.015 0.02
Rise time 0.242 0.0474 0.014 0.0317 0.0317 0.035 0.04
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Fig. 23. SOMAchaos system response for ISE.

Fig. 24. SOMAchaos system response for ITAE.

Fig. 25. SOMAchaos system response for MSE.

7. Conclusion

Optimization of control system parameters remains a formidable task due to its complexity. EAs are rapidly becoming
a method of choice for some intractable systems. One of the main focal issues is the exploration of suitability of different
EAs to this specific task. This paper discusses the application of DE and SOMA to PID controller optimization. The novelty
of the approach is the embedding of chaotic systems inside these algorithms to order to provide a superior search mapping
structure.
The Lozi map was selected as the chaotic map of choice. This was due to its superior performance in previous

research [13]. Three unique PID control problems were selected from literature and evaluated by the chosen heuristics.
For all the problems, four unique optimization specifications (IAE, ISE, ITAE, MSE) were utilized. The obtained values were
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Fig. 26. DEchaos combined system response for DC motor.

Fig. 27. SOMAchaos combined system response for DC motor.

then used for calculation the three performance indices of rise time, settling time and peak overshoot. The results obtained
by chaos driven DE and SOMA, were compared with the values obtained using Ziegler–Nichols method and other published
heuristics. For all the attemptedproblems, DE and SOMAperformedbetter than Ziegler–Nicholsmethod. In the Ball andHoop
system, DE and SOMA performed better than GA, and in the electric DC motor problem, they obtained better overshoot and
settling time when compared to other heuristics of GA, PSO, CC and EP. DE and SOMA argument each other favorably, since
they both obtained consistently better results.
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