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ABSTRACT

I n this work, a simple phenomenological generalizedNewtonian law model has been proposed and testedrfdifferent polymer melts by using theological data taken from the ope
literature. Viscosity is given as a specific functin of three principal invariants of the deformation rate tensor, D, and its absolute value defined a&/D « D. It has been found that the
model predictions are in very good agreement withhte strain rate dependent steady shear and uniaxial extensional viscd#s for linear and branched polyolefmes. The modebehave:
correctly in description of steady planar and equilbaxial extensional viscosities and allows their inépendent strain hardening level control with respetcto uniaxial extensional viscosity.

1. Introduction

As early as in 1948 Rivlin observed that for antiepic gen-
eralized Newtonian fluid the viscosity is a functiof only thre:
principal invariants of the deformation rate tensofip,lIp, IlIp) [1,2].
However, for incompressible nodewtonian liquids (for which tt
first invariant of the deformation rate tensor iera@) visosity is
usually considered to be a function of only the &t and thin
principal invariants of the deformation rate tensp(IIg, IIIp) [3-10].
The main weakness of generalized Newtonian law hadewhich the
stress tensor is directly proportional to the defation rate tensi
throughr] (IIp, I1Ip), is its incapability to correctly repsent the flo\
behavior in ex¢nsional flows, especially in plane flows, where
third invariant of deformation rate tensdflp is 0. In order t
overcome this problem, new definition of the nadewtonian fluic
viscosity is proposed here and tested for thregedéht polymer melts
(highly branched LDPE, slightly branched mLLDPE ditear HDPE
whose rheological characteristics were taken frova open literatui
[11,12].

2. Model development and testing

The simplest non-Newtonian fluid model is generatiZNewtamian
law in the following form:

T 20l My, HipY D (1)

where r means the stress tensor, D represents ¢fi@ndation rat
tensor andrj stands for the viscosity which is not constant {kelin
the standard Newtoan law) and is allowed to vary with the fii
second and third invariant of the deformation rate

tensor,lp = tr(D), IIp = 2tr (D?) andIIlp = det(D), respectively. Let
consider viscosity as a variable which depends breea principe
invariants of the deformation rate tensor D as walon itsabsolute
value \D\ i.e.

T]=f (Ip,lel,”D,Hlpl,f“[),”flal) (2)

Here, it is important to mention that |3 & new tensor defined
|d| = VD m D, which characterizes deformation rate intensity i
particular direction (similarly to D) but withouhé information abot
its orientation (positive or negative). From Table where al
considered invariants are provided for basic floiuations it is
clearly visible that: firstly,lp = 0 due to the applied assumption
fluid incompressibility, secondly, ¢] becomes zero and nonzero
pure shear and extensional flow, respectively. Byndip = II\p\ and
IIIp = IlI|p| for all considered flow types, except for equibiaxial flo
in which 111p = -2s3 and //lp| = 2¢%, i.e. J/H| = |///d] in this case.

It is worth attention that g| characterizes the overall amount
stretching during flow (] ~ O in extensional flows) wherea®
represents the continuity equation for incomprelgsifiuids (Ip-0).
Based on this, the viscosity definition given by .E®) can b
simplified for incompressible fluids as follows:

n=f (") o, My, |lp|} 3)
Let us further assume that viscosity dependencé&giniip, I1Ip, 1/1/d
| " be expressed in the following way:

7 (L, dip, fil, [Htp|) = p(Hp) T oMo |iHa]) (4)

wherer](Ilp) is given by the well known Carreau-Yasuda model
presented in Eq. (5) [13,14], and exponenth|(Z[p, IIID, |///E»]) is



Table 1
Three principal invariants of the deformation ré¢@sorD and its absolute value |D|.
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Here - and & epresent shaar and extensional sirain rates. respectively.

given by Fq. (G}, a novel relation proposed here for the frst time.
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Here . A, a n o 3, # and ¢ are adjustable parameters
and ar is the temperature shift factor. In simple shear flow, the
function f (L, Ho, #in, |Wp]) defined by Eq. (6} is 1 because

(i‘% || +1 ,-;|) /3 = 0. 0n the other hand, in extensiona! flows,

ill.f'4|m,.;i +J’|D|) /3 becomes nonzero [(cqual to &

I3

the term [
for uniaxial flow. 2& tor equibiaxial flow and 2273 for planar
flow) and due to this the function f (f:u Alp, Hip, |HJ'D|) starts
v ¥
to deviate from 1. The ferm (11 1/(4(~31) (1 + tilp/2/?))

in Eq. (G) allows contrelling the significance {amount of differ-
ence) of the particular type of flow with respect to uniaxial

extensional flow. In more detail, this rterm is highest for
uniaxial extensional How (equal to 1, lower for planar exten-
. .. P M e

sional flow, {1 —1/{4(+3Y )} , and lowest for equibiaxial flow,

1+ 1;[4(»-"?)3)) ' {1 -1/(123)1". The differences between the

flow types become mwere obvious for increased parameter || in the

above mentioned order. [n other words, the adjusied value of the

term (1 -+ 1,’(4{\5)3)) " (‘1 + J’H,-;,.-’Hg"'z }w through + parameter

allows independent control of the planar/equibidxextensional
viscosity at the same shear and uniaxial extendiemscosity. It is

important to say that in complex flow modeling bying the proposed
model, the deformation rate tensor should be ewabian the local,
streamline oriented coordinate system; this hetpslistinguish shear
and extensional flow components and determinatién|Dj is less
complicated.

To test the proposed model, strain rate dependeidy shear and
uniaxial extensional viscosities were taken frone thpen literature
[11,12] for three different polymer melts (highlyramched LDPE
Escorene LD165 BW1, slightly branched mLLDPE Ex&&01 and
linear HDPE Tipelin FS 450-26). These polymers welhesen mainly
because they are very well characterized and théieological
properties have already been modeled by advandéerelntial

(XPP model [15], PTT-XPP model [16], modified Leanmodel [17])
as well as integral (MSF model [18]) constitutivguations.

The fitting procedure was as follows: In the fisep, the shear

rate dependent steady shear viscosity was fittethbyCarreau-
Yasuda model, Eqg. (5), in order to determjne, X, a and n model
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parameters. In the second step, the full model mive Eqs. (4-6) was
used to fit the extensional strain rate dependetetady uniaxial
extensional viscosity to determine and f parameters, whereas the
remaining model parameters« A, a, n) were fixed. In both steps,
non-linear least squares minimization regressiorthme employing

the Marquardt-Levenberg algorithm [19,20] was ueld. A

comparison between the experimental data and tlhggsed model
predictions for all tested polymer melts is pro-
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Fig. 1. Comparison between strain rate dependent steadgrsired extensional viscosities
highly branched LDPE Escorene LD165 BW1 atT=200°C.



Table 2

Generalized Newtonian model parameters for allaégtolymer samplesr{ = 20 for all samples).

o (Pas) 2ls) a(-) ni) 2 (5) 50) ()
LRE 703 68553 0.4582 03202 1x 1073 3.27x109 0.037864
mll.DPE 17,999 07078 0.7612 0.40605 1925 5 1073 7.29 % 107 0011145
HOFE 5.033.405 10ao 0.2074 0.3277 Ix10 73 305 1077 0015250
B B e I — ‘t 10 oo e . ey v - e
i "0

a1l

L ol "

1

e,

w] Shear viscasity mcast e ith t‘"‘
] Linmaxial extensicnal vis [Mersurement)
Uniaxial gxtonsianal viscos'ty {proposaed moded ity
. - Bherit viscos ty proposed imoced M)
— Bungaal 2elewsgnal viseosily {roposed moded prediction)
P e Flanar extensional viszosily (proposed magel predictiong R

Steady shear and extensional visgosities (Pa.g)

FITINTE BT R NPT R T

3 104

o L

whoow® ot o' w00 107 10
Shear and extensional strain rates (1/s)

Fig. 2. Comparison between strain rate dependezedst shear and extensional viscosities
slightly branched mLLDPE Exact 0201 & 180 °C.
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Fig. 3. Comparisonbetween strain rate dependent steady shear anasrtel viscosities fc
linear HDPE Tipelin FS 450-26 &= 180 °C.
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Fig- 4. The effect of parameteyjr on the strain rate dependent steady planar extea
viscosity for highly branched LDPE Escorene LD16%/B at T=200°C.

vided in Figs. 1-3 and the corresponding model peatrs are
given in Table 2. As can be seen, the fitting caliabs of the pro-
posed model for steady shear and uniaxial exterdioiscosities
of the chosen polymer melts are very good.

he steady planar and equibiaxial extensional vigmsspre-

dicted by the proposed model for all three samplesalso
provided in Figs. 1-3, where parameter ~ occuriimd@q. (6)

was adjustedd hoc to the value of 20 for all tested samples. As
already mentioned, this parameter allows indepehdentrol of
steady biaxial/planar extensional viscosity. Inerdo explore this
point in more detail, parametét was varied from 0 up to 80 for
highly branched LDPE Escorene LD165 BW1; the cquoesling
predictions for steady planar/equibiaxial extensioviscosities are
compared with steady uniaxial viscosity in Figsrtl&. It can be
clearly seen that an increase in  parameter l¢@adsdecrease

in the strain hardening for both planar and equileibextensional
viscosities and the effect is much more pronounfoedhe latter.
This may justify the use of parameter t/*>0 (ab2Qtin this case)
for the studied highly branched LDPE (especiallgxperimental
planar/equibiaxial extensional viscosity data ao¢ available to
get the t//" parameter directly by the fitting peature). In such a
case, extensional strain hardening in the uniagi@énsional vis-
cosity is slightly higher than in its planar courgart, whereas

the strain hardening in the equibiaxial extensioviatosity is the
lowest, as shown theoretically in Figs. 4-5 andexxpentally for
branched LDPE polymers in [21-23]. Moreover, if tharameter
t/t » 0 (higher than 40 in this case, see Figs)4sf&ain hardening in
equal biaxial and planar extensional viscositiesignificantly sup-
pressed while high extension strain hardening resyainchanged
in uniaxial extensional viscosity, which is typidalr polyisobuty-
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Fig. 5. The effect of parametevf on the extensional strain rate dependent steadybeapial
extensional viscosity for highly branched LDPE Esaee LD165 BW1 af=200’ C.

experimentally in [24]. This suggests that the propbseodel may b
flexible enough to describe strain rate depende¢eady extemional
viscosities of different polymer melts.

3. Conclusion

The simple phenomenological generalized Newtoniaw mode
proposedand tested for different polymer melts in this wohlas
proved a good capability to describe the straire d¢pendent steas
shear and uniaxial extensional viscosities for dneand branche
polyolefines. Moreover, it has shown correct preéidie behavio for
steady planar and equibiaxial extensional viscesitand ability t
control their strain hardening level ingendently of uniaxie
extensional viscosity. This supports the claim ttiet proposed mod
can be useful in steady shear and uni- axlalipr/equibiaxia
extensional viscosity modeling due to its suffidiélexibility and the
use of a low number of adjustable parameters whenh be identifie
easily through analytical expressions for steadgashand extension
viscosities. It is alsoxpected that the proposed model can be us
in modeling indutrial processes, such as film blowing, fil
spinning, film casting or flat die/profile/annulafie flow, where i
enables to assess the role of steady shear andseabal viscosities.
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