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A B S T R A C T  

I n  this work, a simple phenomenological generalized Newtonian law model has been proposed and tested for different polymer melts by using theological data taken from the open 

literature. Viscosity is given as a specific function of three principal invariants of the deformation rate tensor, D, and its absolute value defined as %/D • D.D.D.D. It has been found that the 

model predictions are in very good agreement with the strain rate dependent steady shear and uniaxial extensional viscosities for linear and branched polyolefmes. The model behaves 

correctly in description of steady planar and equibiaxial extensional viscosities and allows their independent strain hardening level control with respect to uniaxial extensional viscosity. 

1. Introduction  

As early as in 1948 Rivlin observed that for an isotropic gen-
eralized Newtonian fluid the viscosity is a function of only three 
principal invariants of the deformation rate tensor, r){lD,llD, IIID) [1,2]. 
However, for incompressible non-Newtonian liquids (for which the 
first invariant of the deformation rate tensor is zero) viscosity is 
usually considered to be a function of only the second and third 
principal invariants of the deformation rate tensor r) (IIQ,  IIID) [3-10]. 
The main weakness of generalized Newtonian law model, in which the 
stress tensor is directly proportional to the deformation rate tensor 
through r] (IID, IIID), is its incapability to correctly represent the flow 
behavior in extensional flows, especially in plane flows, where the 
third invariant of deformation rate tensor IIID is 0. In order to 
overcome this problem, new definition of the non- Newtonian fluid 
viscosity is proposed here and tested for three different polymer melts
(highly branched LDPE, slightly branched mLLDPE and linear HDPE) 
whose rheological characteristics were taken from the open literature 
[11,12]. 

2. Model development and testing 

The simplest non-Newtonian fluid model is generalized Newtonian 
law in the following form: 

tensor, lD = tr(D), IID = 2tr (D2) and IIID = det(D), respectively. Let us 
consider viscosity as a variable which depends on three principal 
invariants of the deformation rate tensor D as well as on its absolute 

value \D\ i.e. 

where r means the stress tensor, D represents the deformation rate 
tensor and rj stands for the viscosity which is not constant (unlike in 
the standard Newtonian law) and is allowed to vary with the first, 
second and third invariant of the deformation rate 

Here, it is important to mention that |D| is a new tensor defined as 
|d| = VD ■ D, which characterizes deformation rate intensity in a 
particular direction (similarly to D) but without the information about 
its orientation (positive or negative). From Table 1, where all 
considered invariants are provided for basic flow situations, it is 
clearly visible that: firstly, lD = 0 due to the applied assumption of 
fluid incompressibility, secondly, /|D| becomes zero and nonzero for 
pure shear and extensional flow, respectively. Finally, IID = II\D\ and 
IIID = III|D| for all considered flow types, except for equibiaxial flow 
in which 1IID = -2s3 and ///|D| = 2è3, i.e. J/J|D| = |///d| in this case. 

It is worth attention that /|D| characterizes the overall amount of 
stretching during flow (/jD| ^ 0 in extensional flows) whereas ID 
represents the continuity equation for incompressible fluids (ID-0). 
Based on this, the viscosity definition given by Eq. (2) can be 
simplified for incompressible fluids as follows: 

Let us further assume that viscosity dependence on /iD|, IID,  IIID, I/I/d 
I can be expressed in the following way: 

where r](IID) is given by the well known Carreau-Yasuda model 
presented in Eq. (5) [13,14], and exponent/ (7|D|, IID,  IIID, |///£»|) is 



Table 1 
Three principal invariants of the deformation rate tensor D and its absolute value |D|. 

(XPP model [15], PTT-XPP model [16], modified Leonov model [17]) 
as well as integral (MSF model [18]) constitutive equations. 
The fitting procedure was as follows: In the first step, the shear 
rate dependent steady shear viscosity was fitted by the Carreau- 
Yasuda model, Eq. (5), in order to determine 770, X, a and n model 

allows independent control of the planar/equibiaxial extensional 
viscosity at the same shear and uniaxial extensional viscosity. It is 
important to say that in complex flow modeling by using the proposed 
model, the deformation rate tensor should be evaluated in the local, 
streamline oriented coordinate system; this helps to distinguish shear 
and extensional flow components and determination of |D| is less 
complicated. 

To test the proposed model, strain rate dependent steady shear and 
uniaxial extensional viscosities were taken from the open literature 
[11,12] for three different polymer melts (highly branched LDPE 
Escorene LD165 BW1, slightly branched mLLDPE Exact 0201 and 
linear HDPE Tipelin FS 450-26). These polymers were chosen mainly 
because they are very well characterized and their Theological 
properties have already been modeled by advanced differential 

parameters. In the second step, the full model given by Eqs. (4-6) was 
used to fit the extensional strain rate dependent steady uniaxial 
extensional viscosity to determine a, and f parameters, whereas the 
remaining model parameters (t]0, A, a, n) were fixed. In both steps, 
non-linear least squares minimization regression method employing 
the Marquardt-Levenberg algorithm [19,20] was utilized. A 
comparison between the experimental data and the proposed model 
predictions for all tested polymer melts is pro- 

Fig. 1. Comparison between strain rate dependent steady shear and extensional viscosities for 

highly branched LDPE Escorene LD165 BW1 atT=200°C. 



Table 2 
Generalized Newtonian model parameters for all tested polymer samples (T^ = 20 for all samples). 

 

Fig. 2. Comparison between strain rate dependent steady shear and extensional viscosities for 

slightly branched mLLDPE Exact 0201 at T= 180 °C. 

Fig- 4. The effect of parameter yjr on the strain rate dependent steady planar extensional 

viscosity for highly branched LDPE Escorene LD165 BW1 at T=200°C. 

Fig. 3. Comparison between strain rate dependent steady shear and extensional viscosities for 

linear HDPE Tipelin FS 450-26 at T= 180 °C. 

vided in Figs. 1-3 and the corresponding model parameters are 
given in Table 2. As can be seen, the fitting capabilities of the pro- 
posed model for steady shear and uniaxial extensional viscosities 
of the chosen polymer melts are very good. 

he steady planar and equibiaxial extensional viscosities pre- 
dicted by the proposed model for all three samples are also 
provided in Figs. 1-3, where parameter ^ occurring in Eq. (6) 
was adjusted ad hoc to the value of 20 for all tested samples. As 
already mentioned, this parameter allows independent control of 
steady biaxial/planar extensional viscosity. In order to explore this 
point in more detail, parameter i/r was varied from 0 up to 80 for 
highly branched LDPE Escorene LD165 BW1; the corresponding 
predictions for steady planar/equibiaxial extensional viscosities are 
compared with steady uniaxial viscosity in Figs 4 and 5. It can be 
clearly seen that an increase in ^ parameter leads to a decrease 
in the strain hardening for both planar and equibiaxial extensional 
viscosities and the effect is much more pronounced for the latter. 
This may justify the use of parameter t/^>0 (about 20 in this case) 
for the studied highly branched LDPE (especially if experimental 
planar/equibiaxial extensional viscosity data are not available to 
get the t//" parameter directly by the fitting procedure). In such a 
case, extensional strain hardening in the uniaxial extensional vis- 
cosity is slightly higher than in its planar counterpart, whereas 
the strain hardening in the equibiaxial extensional viscosity is the 
lowest, as shown theoretically in Figs. 4-5 and experimentally for 
branched LDPE polymers in [21-23]. Moreover, if the parameter 
t/t » 0 (higher than 40 in this case, see Figs. 4-5), strain hardening in 
equal biaxial and planar extensional viscosities is significantly sup- 
pressed while high extension strain hardening remains unchanged 
in uniaxial extensional viscosity, which is typical for polyisobuty- 
lene (with few or probably no long side branches), as shown 



 

Fig. 5. The effect of parameter \/f on the extensional strain rate dependent steady equibiaxial 

extensional viscosity for highly branched LDPE Escorene LD165 BW1 at T=200'C. 

experimentally in [24]. This suggests that the proposed model may be 
flexible enough to describe strain rate dependent steady extensional 
viscosities of different polymer melts. 

3. Conclusion 

The simple phenomenological generalized Newtonian law model 
proposed and tested for different polymer melts in this work has 
proved a good capability to describe the strain rate dependent steady 
shear and uniaxial extensional viscosities for linear and branched 
polyolefines. Moreover, it has shown correct predictive behavior for 
steady planar and equibiaxial extensional viscosities and ability to 
control their strain hardening level independently of uniaxial 
extensional viscosity. This supports the claim that the proposed model 
can be useful in steady shear and uni- axial/planar/equibiaxial 
extensional viscosity modeling due to its sufficient flexibility and the 
use of a low number of adjustable parameters which can be identified 
easily through analytical expressions for steady shear and extensional 
viscosities. It is also expected that the proposed model can be useful 
in modeling industrial processes, such as film blowing, fiber 
spinning, film casting or flat die/profile/annular die flow, where it 
enables to assess the role of steady shear and extensional viscosities. 

Acknowledgments 

financial support (Grant No. 103/09/2066 and MSM 7088352101, 
respectively). 
References 

[1]  R.S. Rivlin, The Hydrodynamics of Non-Newtonian Fluids I, Proc. R. Soc. Lond., Ser. A 
193 (1948) 260-281. 

[2]  R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vols. 1 and 2, 
second ed., John Wiley, New York, 1987. 

[3]  B. Debbaut, M.J. Crochet, Extensional effects in complex flows, J. Non-Newton. Fluid 
Mech. 30 (1988) 169-184. 

[4]  A. Baloch, P. Townsend, M.F. Webster, Extensional effects in flows through contractions 
with abrupt or rounded corners, J. Non-Newton. Fluid Mech. 54 (1994) 285-302. 

[5]  W.N. Song, Z.M. Xia, A phenomenological viscosity model for polymeric fluid, J. Non-
Newton. Fluid Mech. 53 (1994) 151-163. 

[6]  D.M. Binding, A.R. Blythe, S. Gunter, A.A. Mosquera, P. Townsend, M.F. Webster, 
Modelling polymer melt flows in wirecoating process, J. Non-Newton. Fluid Mech. 
64(1996) 191-206. 

[7]  P. Rameshwaran, P. Townsend, M.F. Webster, Simulation of particle settling in rotating 
and non-rotating flows of non-Newtonian fluids, Int. J. Numer. Methods Fluids 26 
(1998) 851-874. 

[8]  P.J. Oliveira, F.T. Pinho, A qualitative assessment of the role of a viscosity depending on 
the third invariant of the rate-of-deformation tensor upon turbulent non-Newtonian flow, 
J. Non-Newton. Fluid Mech. 78 (1998) 1-25. 

[9]  Ch.J.S. Petrie, Extensional viscosity: A critical discussion, J. Non-Newton. Fluid Mech. 
137 (1-3) (2006) 15-23. 

[10] K. Walters, M.F. Webster, H.R. Tamaddon-Jahromi, The numerical simulation of some 
contraction flows of highly elastic liquids and their impact on the relevance of the 
Couette correction in extensional rheology, Chem. Eng. Sci. 64 (2009) 4632-4639. 

[11] R. Pivokonsky, M. Zatloukal, P. Filip, On the predictive/fitting capabilities of the 
advanced differential constitutive equations for branched LDPE melts, J. Non-Newton. 
Fluid Mech. 135 (1) (2006) 58-67. 

[12] R. Pivokonsky, M. Zatloukal, P. Filip, On the predictive/fitting capabilities of the 
advanced differential constitutive equations for linear polyethylene melts, J. Non-
Newton. Fluid Mech. 150 (1) (2008) 56-64. 

[13] K. Yasuda, Ph.D. Thesis, Massachussetts Institute of Technology, Cambridge, MA, 
1979. 

[14] K. Yasuda, R.C. Armstrong, R.E. Cohen, Shear-flow properties of concentrated- 
solutions of linear and star branched polystyrenes, Rheol. Acta 20 (2) (1981) 163-178. 

[15] W.M.H. Verbeeten, G.W.M. Peters, F.P.T. Baaijens, Differential constitutive equations 
for polymer melts: extended Pom-Pom model, J. Rheol. 45 (2001) 823-843. 

[16] R.I. Tanner, S. Nasseri, Simple constitutive models for linear and branched polymers, J. 
Non-Newton. Fluid Mech. 116 (1) (2003) 1-17. 

[17] M. Zatloukal, Differential viscoelastic constitutive equations for polymer melts in 
steady shear and elongational flows, J. Non-Newton. Fluid Mech. 113 (2-3) (2003)209-
227. 

[18] V.H. Rolon-Garrido, R. Pivokonsky, P. Filip, M. Zatloukal, M.H. Wagner, Modelling 
elongational and shear rheology of two LDPE melts, Rheol. Acta 48 (6) (2009)691-697. 

[19] K. Levenberg, A method for the solution of certain problems in least squares, Quarter. 
Appl. Math. 2 (1944) 164-168. 

[20] D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, SIAM 
J. Appl. Math. 11 (1963) 431-441. 

[21] H.M. Laun, H. Schuch, Transient elongational viscosities and drawability of polymer 
melts, J. Rheol. 33 (1) (1989) 119-175. 

[22] M. Kraft, Untersuchungen zur scherinduzierten rheologischen Anisotropie von 
verschiedenen Polyethylen- Schmelzen, Ph.D. Thesis, Dissertation ETH Zurich Nr. 
11417, 1996. 

[23] P. Hachmann, Multiaxiale Dehnung von Polymerschmelzen, Ph.D. Thesis, Dissertation 
ETH Zurich Nr. 11890,1996. 

[24] J. Meissner, S.E. Stephenson, A. Demarmels, P. Portman, Multiaxial elongational flows 
of polymer melts—classification and experimental realization, J. Non- Newton. Fluid 
Mech. 11 (3-4) (1982) 221-237. 

The author wishes to acknowledge Czech Science Foundation and 
the Ministry of Education, Youth and Sports of CR for the 


