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Abstract: - This paper deals with design of continuous-time robustly stabilizing Proportional-Integral (PI) 
controllers for interval systems using the combination of Kronecker summation method, sixteen plant theorem 
and an algebraic approach to controller tuning. The effectiveness and practical applicability of the proposed 
method is demonstrated in both simulation and real experiments including control of a third order nonlinear 
electronic plant. 
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1 Introduction 
Despite the rapid development of many advanced 
control technologies, the engineers from practice 
still clearly prefer the application of controllers with 
simple PI or PID structure. This kind of controllers 
is very popular because of their easy 
implementation and sufficient performance at the 
same time, even under conditions of uncertainty, 
and thus the investigation of an effective tuning 
method remains very topical. 

The long-term research interest has issued in 
number of theoretical and application works on 
classical PI(D) controllers [1], [2], [3], [4], [5] and 
their various modifications [6], [7], [8], [9]. A 
possible approach to robust control design [10], 
[11], [12], [13], [14], [15] for systems with interval 
uncertainty consists of computation of all robustly 
stabilizing controllers and consequently the 
selection of the final one on the basis of user 
demands. The calculation of robustly stabilizing 
controllers can be done using the stability boundary 
locus as published in [16], [17] or alternatively with 

the assistance of Kronecker summation method 
[18]. The approach from [16], [17] has been 
analyzed in [19], [20], while this paper studies 
alternative method [18] and verifies it on the same 
laboratory apparatus as in [19], [20]. Furthermore, a 
technique for controller choice itself can be adopted 
from algebraic approach [21], [22], [23]. This 
method is based mainly on general solutions of 
Diophantine equations in the ring of proper and 
Hurwitz stable rational functions (RPS). An 
advantage is that the controller can be further tuned 
through the only positive scalar tuning parameter m. 

The contribution is focused on computation of 
continuous-time robustly stabilizing PI controllers 
for interval plants using Kronecker summation 
method, sixteen plant theorem and several algebraic 
tools. Originality of the proposed approach lies in 
combination of Kronecker summation method for 
obtaining the stability boundary and the choice of 
the final controller via an algebraic methodology. 
However, the work deals not only with theoretical 
background but also with the practical application in 
laboratory conditions. A nonlinear electronic plant, 
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considered as the 3rd order interval system, has 
been controlled in various operational points with 
the assistance of the designed PI algorithms which 
have been realized using the Simatic automation 
system by Siemens Company. 

The structure of this paper is organized as 
follows. In Section 2, Kronecker summation method 
and its application in feedback stabilization of fixed 
plant via PI controllers are presented. The Section 3 
enriches this method with sixteen plant theorem in 
order to make it utilizable for interval systems. 
Then, Section 4 contains the fundamentals and 
essential rules which are necessary for algebraic 
design of PI controllers under RPS. Further, 
simulation example illustrating application of all 
described techniques is given in Section 5 and 
results of real control of nonlinear electronic plant in 
laboratory conditions are provided in an extensive 
Section 6. Finally, Section 7 offers some conclusion 
remarks. 
 
 
2 Computation of Stabilizing PI 
Controllers using Kronecker 
Summation 
Consider the traditional closed-loop control system 
as depicted in fig. 1. 
 
 w(t) e(t) u(t) y(t) 

- 
( )C s  ( )G s  

 
Fig. 1: Feedback Control Loop 

 
The controlled plant is described by: 
 

 ( )( )
( )

B sG s
A s

=  (1) 

 
and controller is supposed to be in a PI form: 
 

 ( ) I P I
P

k k s kC s k
s s

+= + =  (2) 

 
The initial task is to determine the parameters of PI 
controllers which guarantee stability of the feedback 
system. 

An approach to computation of stabilizing PI 
controllers which is based on interesting features of 
Kronecker summation has been published in the 
paper [18]. 
 

First, remind that Kronecker summation of two 
square matrices Y (of size k-by-k) and Z (l-by-l) is 
generally defined as: 

 
 l kY Z Y I I Z⊕ = ⊗ + ⊗  (3) 
 
where ,k lI I  are identity matrices of size k-by-k and 
l-by-l, respectively, and where ⊗  denotes the 
Kronecker product [24], e.g. concisely: 
 

 
11 1

1

l k l

l

k l kk l

y I y I
Y I

y I y I

⎡ ⎤
⎢ ⎥⊗ = ⎢ ⎥
⎢ ⎥⎣ ⎦

"
# % #

"
 (4) 

 
The momentous property of the obtained square 
matrix Y Z⊕  (kl-by-kl) is that it has kl eigenvalues 
which are pair-wise combinatoric summations of the 
k eigenvalues of Y and l eigenvalues of Z. It means 
the Kronecker summation operation induces the 
“eigenvalue addition” feature to the matrices. One 
can exploit this attribute to obtain the equation for 
which all pairs ( ),P Ik k  leading to purely imaginary 
roots comply. 

The characteristic equation of the closed-loop 
system from fig. 1 is: 
 

 ( )
1 0

( ) ( )

( , ) ( , ) ( , ) 0
CL P I

n
n P I P I P I

P A s s B s k s k

f k k s f k k s f k k

= + + =

= + + + ="
 (5) 

 
Define: 
 

 

1 2

2 3
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 (6) 

 
and transform (5) into matrix differential equation: 
 
 X MX′ =  (7) 
 
where M is n-by-n matrix: 
 

 

0 1 2 1
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0 0 1
0
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and [ ]T
1 2, , , nX x x x′ ′ ′ ′= … , [ ]T

1 2, , , nX x x x= … . The 
equations (5) and (7) are linked via: 
 
 ( )( , )det 0CL n P IP f k k sI M= − =  (9) 

 
Obviously, the same complex variable s is both 

the root of (5) and the eigenvalue of M. Owing to 
the fact that M is a constant matrix, the complex 
conjugates of s must also satisfy (9), i.e.: 
 
 ( )*det 0s I M− =  (10) 

 
On that account, as it has been presented in [18], if 
s jω=  is the root of (5) it must be the eigenvalue of 
M. Moreover, *s jω= −  is also the root of (5) and 
the eigenvalue of M. As the sum of two eigenvalues 
s jω=  and *s jω= −  equals to zero, the Kronecker 
summation of two matrices must be singular when 
such correspondence of Pk , Ik  and ω  occurs. 
Consequently: 
 
 ( )det 0M M⊕ =  (11) 
 
defines the stability boundary in ( ),P Ik k  plane, 
because every couple of ( ),P Ik k  satisfying (11) 
means that the same couple inserted into (5) will 
lead to the pair of conjugate purely imaginary roots 
or zero roots. Those are the only positions where the 
system stability can shift. Generally, the stability 
boundary splits the ( ),P Ik k  plane into the stable and 
unstable regions. The determination of the 
stabilizing area (or areas) can be done via a test 
point, leading to a polynomial to verify, within each 
region. 
 
 
3 Robust Stabilization of Interval 
Plants 
The previous Section has outlined calculation of 
region of stabilizing compensator parameters only 
for a system with coefficients which are fixed and 
can not vary. Nevertheless, the works [16], [17], 
[18] have embellished an arbitrary feedback 
stabilization technique also for interval plants 
simply by using its combination with the sixteen 
plant theorem [10], [25], [26]. According to this 
rule, a first order controller robustly stabilizes an 
interval plant: 
 

 0

0

,
( , )( , , ) ;
( , ) ,

m
i

i i
i
n

i
i i

i

b b s
B s bG s b a m n
A s a a a s

− +

=

− +

=

⎡ ⎤⎣ ⎦
= = <

⎡ ⎤⎣ ⎦

∑

∑
 (12) 

 
where , , ,i i i ib b a a− + − +  represent respectively lower 
and upper bounds for parameters of numerator and 
denominator if and only if it stabilizes its 16 
Kharitonov plants, which are defined as: 
 

 ,
( )( )
( )

i
i j

j

B sG s
A s

=  (13) 

 
where { }, 1,2,3,4i j ∈ ; and 1( )B s  to 4 ( )B s  and 1( )A s  
to 4 ( )A s  are the Kharitonov polynomials for the 
numerator and denominator of the interval system 
(12). 

Remind that the construction of Kharitonov 
polynomials e.g. for the numerator interval 
polynomial: 
 

 
0

( , ) ;
m

i
i i

i
B s b b b s− +

=

⎡ ⎤= ⎣ ⎦∑  (14) 

 
is based on use of the lower and upper bounds of 
interval parameters in compliance with the principle 
[27]: 
 

 

2 3
1 0 1 2 3

2 3
2 0 1 2 3

2 3
3 0 1 2 3

2 3
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+ − − +

− + + −

= + + + +

= + + + +

= + + + +

= + + + +

"
"
"
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 (15) 

 
As can be seen, the stabilization of an interval 

plant directly follows from the simultaneous 
stabilization of all 16 fixed Kharitonov plants. Thus 
the final area of stability for original interval plant is 
given by intersection of all 16 related partial areas 
obtained individually using the Kronecker 
summation method from the previous Part. 
 
 
4 Algebraic Design of PI Controller 
So far, the methodologies from Sections 2 and 3 
allow calculating all robustly stabilizing 
combinations of proportional and integral gains in 
PI controller. Nonetheless, the final selection of a 
controller is another problem. An effective solution 
is represented by algebraic approach to control 
design [21], [22], [23], which is based on general 
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solutions of Diophantine equations in RPS, Youla-
Kučera parameterization and conditions of 
divisibility in the specific ring. A merit of the 
technique is that the controllers can be tuned by the 
only positive scalar parameter 0m > . 

Due to the limited space the paper does not 
provide full details on this method [20], [23]. It 
exploits only one specific result, i.e. the coefficients 
of feedback PI controller (2) can be computed 
according to: 

 

 
2

0

0 0

2 ;P I
m a mk k

b b
−= =  (16) 

 
where the parameters 0a  and 0b  of the first order 
nominal controlled plant: 

 

 0

0

( ) =
+N
bG s

s a
 (17) 

 
are supposed to be known and where the tuning 
parameter 0m >  can be chosen on the basis of 
several approaches such as trivial “trial-and-error”, 
user knowledge and experience, or using 
recommendation [28]: 
 
 0m ka=  (18) 
 
Appropriate coefficient k depends on the size of first 
overshoot of the output (controlled) variable. Some 
of its values can be found in table 1. 
 
 
Table 1: Relation between k and overshoot 

Overshoot [%] k 

0 1.00 

1 1.62 

2 1.87 

3 2.14 

5 2.80 

10 7.38 
 
 
5 Simulation Experiment 
Assume the controlled process described by third 
order interval transfer function, which is adopted 
from [10]: 
 

 [ ] [ ]
[ ] [ ] [ ]3 2

0.75,1.25 0.75,1.25
( , , )

2.75, 3.25 8.75, 9.25 0.75, 9.25
+

=
+ + +

s
G s b a

s s s
 (19) 

 
The initial aim is to determine set of robustly 
stabilizing PI controllers and the following objective 
consists in selecting the final one. 

In the first instance, consider e.g.: 
 

 1,1 3 2

0.75 0.75( )
3.25 8.75 0.75

+=
+ + +

sG s
s s s

 (20) 

 
as the first of 16 Kharitonov plants (13). The closed-
loop characteristic equation (5) takes the form: 

 

 
( )

( )

4 3 23.25 8.75 0.75

0.75 0.75 0.75 0.75 0

+ + + +

+ + + + =
P

P I I

s s k s

k k s k
 (21) 

 
which means that the matrix (8) is: 
 

 
0 1 0 0
0 0 1 0
0 0 0 1

0.75 0.75 0.75 0.75 8.75 0.75 3.25

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥− − − − − − −⎣ ⎦I P I P

M

k k k k

 (22) 

 
The stability boundary is given by (11). The 
position of such pairs ( ),P Ik k  which fulfil (11) are 
shown in fig. 2 and in this specific case it 
determines two open subsets. Choice of arbitrary 
point ( ),P Ik k  from both sides of stability boundary 
and subsequent computation of relevant closed-loop 
characteristic polynomial (21) lead to result that the 
stabilizing PI controllers for the plant (20) are 
included in the right-hand area. 
 

-5 0 5 10 15 20
0
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50

60

70

k
P

k I

 
Fig. 2: Stability Boundary for the Plant (20) 

 
Now, one must repeat the analogical procedure for 
all 16 Kharitonov plants (13). The stability regions 

WSEAS TRANSACTIONS on SYSTEMS Radek Matusu, Roman Prokop, Katarina Matejickova, Monika Bakosova

ISSN: 1109-2777 920 Issue 9, Volume 9, September 2010



for those Kharitonov plants are shown in fig. 3. The 
highlighted intersection of all particular stability 
areas determines the final region of robustly 
stabilizing PI controllers for the original interval 
plant (19). 
 

-15 -10 -5 0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

k
P

k I

Region of Stability

 
Fig. 3: Stability Areas for 16 Kharitonov Plants and 

for the Interval System (19) 
 

Quite naturally, the following step brings the 
question of how to find the practically convenient PI 
controller from the obtained robust stability region. 
Among possible methods, the algebraic approach 
from the Section 4 has been utilized for this 
purpose. 

However, this algebraic synthesis requires the 
model of controlled system in the form of first order 
transfer function in order to obtain the final 
controller of appropriate (first) order (PI type). So 
the simplest approximation of (19) taking advantage 
of neglecting the higher order members has been 
applied. It leads to: 
 

 [ ]
[ ] [ ]

0.75,1.25
( , , )

8.75, 9.25 0.75, 9.25
=

+AG s b a
s

 (23) 

 
Then, computing the average values of interval 
parameters has resulted in the nominal plant for 
control design: 
 

 1 0.1( )
9 5 0.5

= =
+ +NG s

s s
 (24) 

 
The requirement of 1% first overshoot in 

controlled signal for the case of nominal system (24) 
leads to the choice of relevant tuning parameter m. It 
has been specified according to relation (18) and 
data from table 1: 

 

 0 1.62 0.5 0.9= = ⋅ =m ka  (25) 
 

Next, the equations (18) and (16) give the transfer 
function of the controller: 
 

 11.2 7.29( ) += sC s
s

 (26) 

 
As can be clearly verified, this controller is located 
inside the region of stability – see its position in fig. 
4. 
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k
P

k I

Controller

 
Fig. 4: Position of Controller (26) in Stability 

Region 
 
Thus, the regulator must robustly stabilize the plant 
(19). 

On the top of that, fig. 5 simply demonstrates 
robust stability. It shows the control responses of the 
loop with the PI controller (26) and 1024 
“representative” systems from the interval family 
(19). Each interval parameter has been divided into 
3 subintervals and thus these 4 values and 5 
parameters result in 54 1024=  systems for 
simulation. Moreover, the red curve represents the 
output variable for the nominal system (24). The 
prescribed 1%-size of overshoot has been really 
observed for this case. Besides, it has been assumed 
the step reference signal changing from 1 to 2 in one 
third of simulation time and the step load 
disturbance -5 which influences the input to the 
controlled plant during the last third of simulation. 
As can be seen, all “representative” systems are 
successfully stabilized which confirms that the 
controller (26) really robustly stabilizes the interval 
plant (19). 
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Fig. 5: Output Signals of 1024 “Representative” 

Plants and Nominal System 
 
 
6 Real Control Experiments under 
Laboratory Conditions 
The presented theoretical tools have been tested also 
in laboratory conditions during robust control of a 
nonlinear electronic model while the control loop 
has been realized using Simatic S7-300 automation 
system. 

The utilized plant, constructed at Slovak 
University of Technology in Bratislava, has 
included a 3rd order system with a variable time 
constant, adjustable from 5s to 20s, and a model of 
nonlinear valve. The real visual appearance of this 
model is shown in fig. 6 and the block diagram of 
the process is in fig. 7, where signals are denoted as 
follows: 
V – control signal for valve opening (0 – 10V) 
F – signal representing the valve opening (0 – 10V) 
P – output of the process (0 – 10V) 
U – disturbance (0 – 10V) 
 

 
Fig. 6: Electronic Laboratory Model 

 

 

VALVE T1 T2 T3 
V

F

U

P

 
Fig. 7: Block Diagram of Laboratory Model 

 
The plant has been identified as the third order 

interval system which has led to the approximate 
mathematical model [19], [20], [29]: 
 

 [ ]
[ ] [ ] [ ]3 2

0.35, 5.5
( , , )

83, 268 104,171 19, 25 1IG s b a
s s s

=
+ + +

 (27) 

 
The first of its 16 Kharitonov plants (13) can be 
simply constructed: 
 

 1,1 3 2

0.35( )
268 171 19 1

G s
s s s

=
+ + +

 (28) 

 
The closed-loop characteristic equation (5) is: 
 
 ( )4 3 2268 171 19 1 0.35 0.35 0P Is s s k s k+ + + + + =  (29) 
 
From here, the matrix (8) follows: 
 

 
0 1 0 0
0 0 1 0
0 0 0 1

0.001306 0.003731 0.001306 0.0709 0.6381I P

M

k k

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥− − − − −⎣ ⎦

 (30) 

 
The stability boundary determined according to (11)
is depicted in fig. 8. As can be verified, the 
stabilizing PI controllers for the plant (28) are in the 
inner space. 
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Fig. 8: Stability Boundary for the Plant (28) 
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Generally, we have to repeat the procedure for 
all 16 Kharitonov plants (13) as in the previous 
simulation example. Nonetheless, in such specific 
case, only 8 plants are enough to test. It is thanks to 
the fact that the numerator of (27) represents just 
zero order polynomial with two extreme values and 
thus it is not necessary to deal with all 4 Kharitonov 
polynomials for this numerator. The regions of 
stability for all 8 Kharitonov plants are plotted in 
fig. 9. 
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Fig. 9: Stability Areas for 8 Kharitonov Plants 

 
The intersection of all these stability areas is 
zoomed and depicted in fig. 10. It determines the 
final region of robustly stabilizing PI controllers for 
the original interval model (27). 
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Fig. 10: Stability Region for the Interval System 

(27) 
 

Analogically to the previous simulation Section, 
the suitable PI controller from the region of robust 
stability has been found using the algebraic 
synthesis. Thus, the original model (27) has been 
approximated to the first order one: 

 [ ]
[ ]

0.35, 5.5
( , , )

19, 25 1AG s b a
s

=
+

 (31) 

 
and the mean values of interval parameters in order 
to obtain the nominal plant for controller design has 
been computed: 
 

 2.925 0.133( )
22 1 0.04545NG s

s s
=

+ +
�  (32) 

 
First, the assumption of 0% first overshoot in 

output variable for the case of nominal system, 
application of appropriate parameter k from table 1, 
and furthermore equations (18) and (16) give the 
transfer function of the controller: 
 

 1
0.3417 0.015530% 0.04545 ( ) sm C s

s
+

⇒ = ⇒ �  (33) 

 
Then analogically, 1% first overshoot requirement 
results in: 
 

 2
0.7655 0.040761% 0.07363 ( ) +

⇒ ⇒ =� sm C s
s

 (34) 

 
The fig. 11 depicts the positions of the 

controllers (33) and (34) in the stability area from 
fig. 10. As can be seen, they lie on the curve 
hypothetically connecting the other potential 
controllers tuned by various parameters 0m > . 
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Fig. 11: Positions of Controllers (33) and (34) in 

Stability Region 
 

Finally, three control experiments have been 
executed under different working points using the 
chosen controllers and PLC Simatic S7-300. 
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Fig. 12: Real Control Results (for 15% Reference 

Point) 
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Fig. 13: Real Control Results (for 60% Reference 

Point) 
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Fig. 14: Real Control Results (for 90% Reference 

Point) 
 

The nominally prescribed overshoots have not 
been measured in real conditions. Actually it was 
expected, because the controlled plant has had 

highly nonlinear behaviour and these 
recommendations strictly hold true only for the 
nominal linear system. Figs. 12-14 indicate that the 
“less aggressive” controller 1C  provides very good 
results mainly in the mean set points, but it has 
comparatively long settling time in higher 
operational areas. On the other hand, the controller 

2C  is much “faster” here, however it is more 
oscillating in the lower levels. Altogether, both 
compensators have been able to control the 
nonlinear process robustly stable and with 
acceptable performance. The definitive selection of 
the controller would depend on the main operational 
area. 
 
 
7 Conclusion 
The paper has dealt with an approach to 
computation of robustly stabilizing PI controllers. 
The proposed method has been based on 
combination of calculating the stability boundary 
via Kronecker summation, its extension for interval 
systems using sixteen plant theorem, and the choice 
of the final regulator through the single-parameter 
tuning algebraic approach. The developed synthesis 
represents easy but effective way of designing the 
controllers for interval systems. On the other hand, 
coincident nominal performance and robust stability 
can not be assured in advance. They have to be 
verified during the design process which can be 
considered as a method demerit. However, the 
applicability has been shown first on simulation 
example with open region of stability and 
subsequently also on laboratory experiments in 
which a nonlinear 3rd order electronic model has 
been successfully controlled in various operational 
points. 
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