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Abstract: - The paper deals with comparison of different continuous-time strategies applied to control of single-
input single-output (SISO) periodically time-varying systems with delay. The first method is based on the 
fractional representation in the ring of proper and stable rational functions (RPS), general solutions of 
Diophantine equations and conditions of divisibility while the other two methods use the modified Smith 
predictor structures in combination with standard forms for minimum of integral squared time error (ISTE) or 
design by Coefficient Diagram Method (CDM). The capabilities of all techniques are demonstrated on 
simulative examples for first and second order periodically time-varying time-delay systems. Moreover, various 
modifications and improvements, such as control structure with more degrees of freedom or utilization of 
disturbance controller are also included in the research. 
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1 Introduction 
Plants affected by dead time have attracted attention 
of control theory researchers for decades. The reason 
of this interest can be seen in common presence of 
dead time in real controlled processes and hence in 
the necessity of quality and easily applicable control 
algorithms for this type of systems [1], [2], [3], [4]. 
Unfortunately, time delay always means worse 
control conditions and, furthermore, the situation is 
even much more complicated if it is time-varying. 

The possible effective and economical solution for 
systems with relatively small or limited changes of 
parameters is the application of robust enough fixed-
coefficient controllers. The worthwhile closed-loop 
configuration for compensation of time delay has 
been well known as Smith predictor since 1959. 
Recently, many new modifications of Smith predictor 
with improved properties have been introduced [5], 
[6], [7]. Another way how to overcome dead time lies 
in combination of its approximation and following 
utilization of an algebraic control design method. The 
advantageous solution represents fractional approach 
developed in [8], [9] and applied for robust control of 
time-delay systems e.g. in [10]. 

The main aim of this paper is to provide 
thorough analysis and comparison of methods which 
are applicable to control of SISO periodically time-

varying systems with delay. The outputs given by 
continuous-time controller designed in RPS under 
assumption of one degree of freedom (1DOF) and 
two degrees of freedom (2DOF) control loop 
configuration [10], [11], [12] are compared with 
those obtained with the use of the modified Smith 
predictor designed by [5] and also the modified PI-
PD Smith predictor with or without presence of a 
disturbance controller [6]. Some preliminary results 
on this topic are presented in [13], [14]. 

The paper is organized as follows. In Section 2, 
basic description of systems with periodically time-
varying parameters is provided. The Section 3 and 
Section 4 then contain the theoretical backgrounds 
for an algebraic approach to control design in RPS 
and modified Smith predictors, respectively. 
Further, the specific controller calculations, 
simulative comparisons and analyses for first and 
second order periodically time-varying systems with 
delay are presented in an extensive Section 5. And 
finally, Section 6 offers some conclusion remarks. 
 
 
2 Description of Systems with 
Periodically Time-Varying Parameters 
Number of real natural and industrial processes has 
a time-varying behaviour. For the purpose of this 
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paper, the controlled objects are modelled as SISO 
linear continuous-time dynamical systems with 
harmonically time-varying parameters and delay. 
The plants are described by differential equation: 
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with initial conditions: 
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and m n< . The coefficients in (1) are periodically t-
variant according to: 
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where , ,m nβ α θ  are real constants; , ,bm anλ λ λΘ  
amplitudes and , ,bm anω ω ωΘ  angular velocities. 
Obviously, the selection 0bm anλ λ λΘ= = =  or 

0bm anω ω ωΘ= = =  would represent time-invariant 
system. 

However, a convenient non-standard hybrid 
“transfer functions”, whose coefficients depend both 
on complex variable s and on time t, can be used for 
description of such systems instead of differential 
equations. The notation is than simplified to: 
 

 
1

( )1 1 0
1

1 1 0

( ) ( ) ( ) ( )( , )
( ) ( ) ( ) ( )

m m
t sm m

n n
n n

b t s b t s b t b tG s t e
a t s a t s a t a t

m n

−
−Θ−

−
−

+ + + +=
+ + + + +

<

"
…  (4) 

 
again with parameters (3). 

Just for example, the pair of controlled systems 
investigated in this paper has the differential 
equations and the corresponding hybrid “transfer 
functions” as follows: 
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3 An Algebraic Approach to Control 
Design in RPS 
The key idea of the proposed control design method 
consists in determining the stabilizing controller in 
accordance with demanded properties of the control 
loop for a fixed nominal system and subsequently in 
the application of obtained regulator to a perturbed 
time-variant plant. The asymptotic tracking of the 
reference value, disturbance rejection or disturbance 
attenuation belong among the most commonly 
required features. The applied fractional approach 
developed in [8] and [9] and discussed in [11], [12], 
[15] enables relatively deep insight into control 
tuning and a more elegant expression of all suitable 
controllers. This synthesis supposes the description 
of linear systems in RPS as a ratio of two rational 
fractions which is bounded with conventional 
transfer function by transformation: 
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The scalar positive parameter 0m >  which enters 
into the synthesis process can be later conveniently 
used as a “tuning knob” influencing final control 
behavior. 

A general feedback system is shown in Fig. 1. It 
should be emphasized that all functions and signals 
depicted in this figure are considered to belong to 
RPS. 
 

 
Fig. 1: General Feedback Control System 
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two degrees of freedom (2DOF, FBFW) and, 
assuming zero disturbances ( )0n v= = , control 
signal u is generated according to the law: 
 

 ( )f b f b

w
u C C C w C y

y
⎛ ⎞

= = −⎜ ⎟−⎝ ⎠
 (8) 

 

If ( )( ) ( ) ( )
( )b f

Q sC s C s C s
P s

= = =  then Fig. 1 

represents conventional control system with one 
degree of freedom (1DOF, FB). This loop works 
with tracking error e in compliance with: 
 
 ( )b bu C w y C e= − =  (9) 
 

Signals w, n, v represent reference value, load 
disturbance in the input and disturbance in the 
output of the control plant, respectively. Usually, w 
and n are considered as step signals and disturbance 
v is modelled to have a harmonic shape. Hence, the 
denominators of these signals in RPS are: 
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where ω is angular velocity and 0m > . 

The first and definitely the most important 
requirement is to ensure the stability of control loop 
from Fig. 1. Stabilizing controllers are given by ratio: 
 

 0

0

Q Q AT
P P BT

−=
+

 (11) 

 
where T is free in RPS, 0 0P BT+ ≠  and 0 0,P Q  is a 
particular solution of Diophantine equation: 
 
 1AP BQ+ =  (12) 
 
The formula (11) says that there exists either infinite 
amount of stabilizing controllers or none and it is 
called (Bongiorno-)Youla-Kučera parameterization 
of controllers. 

Another important property is the convergence of 
tracking error e to zero. Working on an assumption 
that no disturbances affect the control system in Fig. 
1 ( )0n v= =  it follows for circuits given by (9) and 
(8), respectively: 
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Algebraic analysis of (13), (14) and substitution of 
(12) to (13), (14) results in fact that for zero tracking 
error: 
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the expression wF  must disappear from 
denominators of (13), (14). Therefore wF  must 
divide product AP  for structure 1DOF (9), possibly 

wF  must divide ( )1 BR−  for structure 2DOF (8). 
The second condition implies another Diophantine 
equation: 
 
 1wF Z BR+ =  (16) 
 

Utilizing this technique, the controller can be 
designed also for rejection of disturbances n and v. 
The situation during synthesis is similar, only 
slightly more complicated [12]. 

An illustration of the practical controller 
computation is shown in the Section 5. 
 
 
4 Modified Smith Predictors 
The Smith predictor is a popular, well-known and 
relatively effective structure for dead time 
compensation. The main advantage of the Smith 
predictor is that the time delay term is eliminated 
from the characteristic equation of the closed-loop 
system. Typically a PI or PID controller is used. 
However, the Smith predictor fails for unstable or 
integrating processes under presence of disturbance 
and it is very sensitive to modelling errors. Some of 
classical Smith predictor drawbacks have been 
reduced by its modifications [5], [6], [7], [16], 
which have brought the improvement setpoint and 
disturbance responses for many situations. For the 
purpose of this paper, two modifications have been 
selected to be compared with the algebraic control 
design. This section provides only the very basic 
theoretical background with references. The 
examples of controller calculations are given in the 
following Section 5. 
 
 
4.1 Modified Smith Predictor Design by 
CDM 
The controller design using the Coefficient Diagram 
Method (CDM) was proposed in [5]. This method 
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uses the improved Smith predictor structure with the 
trio of controllers according to Fig. 2. Furthermore, 
w, n, y denote reference signal, disturbance in the 
input of the controlled plant, and output signal, 
respectively. 
 
 

Plant 

Model 
-- 2 ( )cG s  

3 ( )cG s  

( )rG s  

( )mG s  ( )sΘ

( , )s tΘ1( )cG s  w y 
n 

-

 
Fig. 2: The Modified Smith Predictor Structure 

(CDM) 
 

The CDM design is based on the four studies: 
• Coefficient diagram: It is a semilogarithmic 

diagram which allows investigating the 
stability and response of systems in a single 
graph. The vertical axis logarithmically 
shows the coefficients of characteristic 
polynomial, stability indices, stability limits 
and equivalent time constant while the 
horizontal axis represents the order values 
corresponding to each of coefficients. 

• Modification of Kessler standard form: The 
form developed by Kessler in 1960 has 
decreased the oscillations and overshoots 
compared to the original Graham’s ITAE 
form. In this approach, a new form called 
“Standard Manabe Form” is used. This design 
should result in quite stable and robust 
responses with small settling time. 

• Lipatov stability analysis: The effect of 
coefficient variations can not be seen clearly 
for higher order systems. The conditions for 
stability or instability of such systems, based 
on Lipatov’s work, are included in CDM 
design technique. 

• Obtaining characteristic polynomial: A 
method similar to pole placement is applied. 
However, the main difference is the Manabe 
form. 

The reader interested in CDM can find the all 
necessary background and details of the procedure 
in [5], [17], [18] and related literature. 
 
 
4.2 Modified PI-PD Smith Predictor for 
Control of Processes with Long Dead Time 
The modification of the classical Smith predictor 
presented in [6] comes from the structure with three 

controllers shown in Fig. 3, where 1cG  is a PI 
controller, 2cG  is a PD (or only P where it is 
appropriate) controller and 3cG  is the disturbance 
controller introduced in [16]. Again, w, n, y 
represent reference signal, disturbance in the input 
of the controlled plant, and output signal, 
respectively. 
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Fig. 3: The Modified Smith Predictor Structure (PI-

PD) 
 

The new structure, which replaces the 
conventional controller by a PI-PD structure, should 
outperform a PID controller in some common SISO 
systems. Generally, the synthesis is based on usage 
of standard forms for obtaining the optimal closed-
loop transfer function parameters in the meaning of 
integral squared time error (ISTE) criterion, i.e. a 
simple algebraic approach to control system design 
is applied. 
 
 
5 Design of Controllers and 
Simulative Comparison 
 
 
5.1 Example 1 – First Order Time-Varying 
Plant with Delay 
A controlled plant is given by: 
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and its nominal mathematical model, for the control 
design purpose, is assumed as: 
 

 5 51 5( )
0.2 5 1

s sG s e e
s s

− −= =
+ +

 (18) 

 
The controllers have been tuned successively for 

all three compared methods (RPS, CDM and PI-PD) 
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in order to obtain visually acceptable results without 
or with only small overshot and short settling time. 
For the sake of better comparability, responses with 
the same time of reaching the reference value were 
chosen (about 14.6s in this case). 
 
 
5.1.1 Control Design in RPS  
Regarding to an algebraic approach to control 
design in RPS, the time-delay term from the nominal 
system (18) has to be approximated, for example 
using the first order Padé approximation: 
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After transposition of all transfer functions in RPS 
the basic “stabilizing” Diophantine equation (12) 
can be written in the form: 
 

 
( ) ( )

2
1 0 1 0 1 0 1 0

2 2 1s a s a p s p b s b q s q
s m s ms m s m

+ + + + ++ =
+ ++ +

 (20) 

 
Its particular solution is given by: 
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Consequently, all stabilizing controllers can be 
obtained with the assistance of Youla-Kučera 
parameterization (11): 
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where T is an arbitrary member of RPS. Supposing 
the step changes in reference signal (and thus 

w
sF

s m
=

+
), it is now necessary to choose such 

controller from the set (22) in order to Fw divides 

AP. Hence, it has to be found 0T t=  so that term s 
can be separated from the numerator of P. After 
simple adjustment it follows that complying 0t  is 

the one and only, i.e. 0
0

0

p mt
b

= − . By its substitution 

into (22) the numerator and denominator of the 
controller, which will not only stabilize the 
controlled plant in closed-loop system but it will 
also guarantee the asymptotic tracking of the 
reference signal, are obtained: 
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As can be seen, the final feedback controller of 

PID type is described by transfer function: 
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with parameters: 
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It is obvious that all controller coefficients are 
generally nonlinear functions of parameter 0m > . 

If 2DOF control structure described by (8) is 
considered, it is necessary to solve one more 
Diophantine equation (16), here in the concrete form: 
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with the useful term of particular solution 
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is again free in RPS (e.g.  0T =� ). It leads to the 
feedforward part: 
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Finally, the calculation of 1DOF regulator using 

the tuning parameter 0.301m =  for the system (19) 
gives the transfer function: 
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and for the case of 2DOF structure of control system 
and 0.335m =  it follows: 
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5.1.2 Modified Smith Predictor Design by CDM  
In CDM as the second method the settling time was 
preset to 8.07st s=  and disturbance rejection 
structure was selected. Obviously, the transfer 
function of controlled system model (without TD) is 
assumed in the form: 
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The trio of resulting controllers is: 
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The coefficients of these regulators follow from: 
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where 
 

 2.1538stτ =  (34) 
 
 
5.1.3 Modified PI-PD Smith Predictor  
Again, the same controlled system model (without 
TD) has been supposed, but now in the different 
mathematical form: 
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The transfer functions of the three controllers are: 
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The parameters cK  and iT  have been adjusted by 
user, while fK  follows from equations: 
 

 0 0.3178c
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K
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The size of 1d  in (38) must be determined on the 
basis of 1c  according to graph from [6]. For the 
purpose of this paper, the graphical relation has 
been approximated by the sixth order polynomial: 
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3 2
1 1 1
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d c c c
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Furthermore, the higher value of disturbance 

controller 3( )c oG s K=  generally ensures better 
disturbance rejection, however there is a trade-off 
between this rejection and oscillations of the control 
and output signal. Thus, not only the zero size of 

oK  as given in (36) has been used for simulation, 
but also the second option 0.1oK =  has been 
utilized. 
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5.1.4 Simulative Comparison of the Methods  
The controllers designed via all three described 
methods (RPS, CDM and PI-PD) have been applied 
during simulative control. Moreover, the control 
design in RPS has been performed both for 1DOF 
and 2DOF while the modified PI-PD Smith 
predictor has been tested using two different values 
of disturbance controller ( 0oK =  and 0.1oK = ). 
First, it has been controlled the nominal 
mathematical model with fixed parameters (18) and 
then the time-varying system (17). Thus, it has led 
to 5 control simulations for nominal and other 5 
simulations for perturbed plant. Furthermore, the 
following common simulation conditions were used: 
simulation time 150ST s= , reference value 1 with 
step to 2 in 1 3  of ST , load disturbance injected into 
the plant input 0.1n = −  in 2 3  of ST , and zero 
disturbance v in the plant output. The results for 
nominal case are visualized in Fig. 4 and outputs for 
time-varying system in Fig. 5. 

Besides, two integral criteria have been used to 
evaluate the quality of control. First, it has been an 
Integral Squared Error (ISE) computed according to: 
 

 2

0

ISE ( )e t dt
∞

= ∫  (41) 

 
and the second evaluation has been based on 
Integral Time Squared Error (ITSE) which 
corresponds to: 
 

 2

0

ITSE ( )te t dt
∞

= ∫  (42) 

 
The values of ISE and ITSE criteria for fixed 
nominal and time-varying system are given in Tab. 
1 and Tab. 2, respectively. 
 
 
Table 1: Outcomes of ISE and ITSE calculations for 
the nominal system (18) 

Method ISE ITSE 

RPS 1DOF 14.93 511.3 

RPS 2DOF 14.70 490.4 

CDM 16.35 566.1 

PI-PD 0oK =  17.58 617.8 

PI-PD 0.1oK =  17.26 580.0 
 
 

Table 2: Outcomes of ISE and ITSE calculations for 
the time-varying system (17) 

Method ISE ITSE 

RPS 1DOF 14.88 514.2 

RPS 2DOF 14.65 492.8 

CDM 16.31 570.5 

PI-PD 0oK =  17.58 623.4 

PI-PD 0.1oK =  17.27 584.9 
 

As can be seen, all methods are able to control 
given time-varying delay system relatively 
acceptable. Control design in RPS in combination 
with 2DOF configuration gives the best responses 
from the integral criteria point of view, on the top of 
that without overshot. This technique provides 
moreover very good rejection of load disturbance. 
The cost for it is a bit more aggressive control 
signal. The 1DOF configuration is only a little 
worse then 2DOF, but it has to cope with the plant 
using the simpler control system structure. The 
CDM methodology has taken the third place and it 
represents a competitive option from the area of 
modified Smith predictors. The interesting 
alternative specialized on disturbance rejection is 
modified PI-PD Smith predictor with “some non-
zero” value of disturbance controller (here it has 
been 0.1oK = ). However, as it was already 
mentioned, the fast disturbance rejection is bought 
out by greater oscillations in both output and control 
signal compared to the version with 0oK =  – see 
especially Fig. 5. 
 
 
5.2 Example 2 – Second Order Time-
Varying Plant with Delay 
In this case a controlled system is given by: 
 
 ( ) ( )

[ ] [ ]

( ) ( )
( )1 0.5sin(4 )

2

( ) 3 0.3sin 5 ( ) 2 0.2sin 6 ( )

2 0.2sin(3 ) ( 1 0.5sin(4 ) );
2 0.2sin(3 )( , )

3 0.3sin 5 2 0.2sin 6
t s

y t t y t t y t

t u t t
tG s t e

s t s t
− +

′′ ′+ ⎡ + ⎤ + ⎡ + ⎤ =⎣ ⎦ ⎣ ⎦
= + − +

+=
+ ⎡ + ⎤ + ⎡ + ⎤⎣ ⎦ ⎣ ⎦

 (43) 

 
and its nominal mathematical model used in control 
design process is supposed as: 
 

 ( )( )2

2

2 1( )
3 2 1 0.5 1

1
0.5 1.5 1

s s

s

G s e e
s s s s

e
s s

− −

−

= = =
+ + + +

=
+ +

 (44) 
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Similarly to the previous example, the regulators 
have been tuned successively for all compared 
techniques. The time of reaching the reference 
signal was considered to be about 3.9s in all 
simulations to ensure comparability. 
 
 
5.2.1 Control Design in RPS  
In the first step, the time-delay term has been again 
approximated using the first order Padé 
approximation because of suitable form of 
controlled system transfer function: 
 

 

( )
( )( )2 2

1 0
3 2 3 2

2 1 0

2 0.5 12( )
3 2 3 2 0.5 1

2 4
5 8 4

s s
G s e

s s s s s

s b s b
s s s s a s a s a

− − +
= ≈ =

+ + + + +

− + += =
+ + + + + +

 (45) 

 
The Diophantine equation (12) in RPS now takes the 
form: 
 

 
( ) ( )

( ) ( )

3 2 2
2 1 0 2 1 0

3 2

2
1 0 2 1 0

3 2 1

s a s a s a p s p s p
s m s m

b s b q s q s q
s m s m

+ + + + + +
+ +

+ + ++ =
+ +

 (46) 

 
The whole situation is analogical to the example 1, 
i.e. the particular solution of the equation (46) has to 
be computed and consequently, the set of stabilizing 
controller can be expressed using the Youla-Kučera 
parameterization: 
 

 
( ) ( )

( ) ( )

2
1 0 1 0

0 2 3

2 2
2 1 0 1 0

0 2 3

s p s p b s bP P BT T
s m s m

q s q s q s a s aQ Q AT T
s m s m

+ + += + = +
+ +

+ + + += − = −
+ +

 (47) 

 
Assuming the step changes in reference signal 

( w
sF

s m
=

+
) and application of analogical ideas 

from the previous example lead to exactly the same 
0

0
0

p mT t
b

= = −  which ensures the asymptotic 

tracking. The final third order feedback controller 
for the tuning parameter 1.658m =  is given by 
transfer function: 
 

 

3 2
3 2 1 0

3 2
2 1

3 2

3 2
1.2832 6.4329 10.3295 5.1933

4.948 11.0609

Q q s q s q s q
P s p s p s

s s s
s s s

+ + += =
+ +

+ + +=
+ +

� � � �
� �

 (48) 

 
For 2DOF control structure the additional 

Diophantine equation (16): 
 

 
( ) ( )

2 1 0 1 0
02 3 1s z s z s z b s b r

s m s m s m
+ + ++ =

+ + +
 (49) 

 
has to be solved. Thus the tuning parameter 

1.92m =  results in 2DOF controllers: 
 

 

3 2
3 2 1 0

3 2
2 1

3 2

3 2

3 2
3 2 1 0

3 2
2 1

3 2

3 2

3.03 15.2509 24.644 12.5241
6.52 20.7559

1.7695 10.1922 19.5689 12.5241
6.52 20.7559

Q q s q s q s q
P s p s p s

s s s
s s s

R r s r s r s r
P s p s p s

s s s
s s s

+ + += =
+ +

+ + +=
+ +

+ + += =
+ +

+ + +=
+ +

� � � �
� �

� � � �
� �

 (50) 

 
 
5.2.2 Modified Smith Predictor Design by CDM  
The settling time for CDM was adjusted to 

2.985st s=  and disturbance rejection structure was 
kept. The model of controlled plant (without TD) 
has been considered as: 
 

 2 2
2 1

1( )
1 0.5 1.5 1m

KG s
a s a s s s

= =
+ + + +

 (51) 

 
These assumptions lead to the three controllers: 
 

 

1

2 2 2
2 1

2 2
3 2 1

( ) 1
1 1( )

0.05903 0.2488

( ) 1 0.3360 1.1371 1

c

c

c

G s

G s
l s l s s s

G s k s k s s s

=

= =
+ +

= + + = + +

 (52) 

 
The controller parameters are: 
 

 
4

2
2125

Kl
a

τ=  (53) 

 

 

3

2 1

1
2

12.5
K l a

l
a

τ −
=  (54) 
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2

1 1 2

2
2.5
K l a l

k
K

τ − −
=  (55) 

 

 1
1

K lk
K

τ −=  (56) 

 
where τ  is given again by (34). 
 
 
5.1.3 Modified PI-PD Smith Predictor  
A considered form of mathematical model for this 
instance is: 
 

 0
2 2

1 0

2( )
3 2mG s

s s s s
β

α α
= =

+ + + +
 (57) 

 
Regulators are given as: 
 

 

1

2

3

1 1( ) 1 0.05 1
0.0609

( ) 0.6251 0.3683

( ) 0

c c
i

c d f

c o

G s K
T s s

G s T s K s

G s K

⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

= + = − +

= =

 (58) 

 
Again, the parameters cK , iT  have been user-preset 
and dT , fK  can be calculated from: 
 

 03 1.1798c

i

K
T

βα = =  (59) 

 

 1
1

2

2.0380
0.07185

1.4833i

d
c T

d
α

=
= = ⇒

=
 (60) 

 

 2 1

0
d

dT α α
β

−=  (61) 

 

 
2

1 0 0

0

c
f

d KK α α β
β

− −=  (62) 

 
The paper [6] offers the diagram depicting the 
dependence of 1d  and 2d  on 1c . Here, the graphs 
have been replaced by polynomial relations: 
 

 
6 5 4

1 1 1 1
3 2
1 1 1

0.0049 0.0693 0.3613

0.8238 0.6236 0.3832 2.0134

d c c c

c c c

= − + − +

+ − + +
 (63) 

 

 
6 5 4

2 1 1 1
3 2
1 1 1

0.0008 0.015 0.1022

0.3365 0.531 0.0396 1.4778

d c c c

c c c

= − + −

− + + +
 (64) 

 
And finally, the other higher value of disturbance 

controller 3( ) 0.35c oG s K= =  has been tested as in 
the previous instance. 
 
 
5.1.4 Simulative Comparison of the Methods  
Again, 5 control simulations for nominal and other 5 
simulations for perturbed plant are presented under 
following simulation conditions: simulation time 

45ST s= , reference value 1 with step to 2 in 1 3  of 

ST , load disturbance injected into the plant input 
0.5n = −  in 2 3  of ST , and zero disturbance v in the 

plant output. The Fig. 6 shows the outputs for 
nominal case while curves for time-varying plant 
are in Fig. 7. The results of ISE and ITSE criteria 
are provided in Tab. 3 and Tab. 4. 
 
 
Table 3: Outcomes of ISE and ITSE calculations for 
the nominal system (44) 

Method ISE ITSE 

RPS 1DOF 3.777 38.28 

RPS 2DOF 3.567 34.57 

CDM 4.543 47.24 

PI-PD 0oK =  4.898 51.69 

PI-PD 0.35oK =  4.815 48.82 
 
 
Table 4: Outcomes of ISE and ITSE calculations for 
the time-varying system (43) 

Method ISE ITSE 

RPS 1DOF 3.776 39.51 

RPS 2DOF 3.551 35.79 

CDM 4.605 48.28 

PI-PD 0oK =  4.975 53.63 

PI-PD 0.35oK =  4.889 50.84 
 
The successfulness confrontation of individual 
methods is practically the same as for the first order 
plant. 
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Fig. 4: Output and control signals for the nominal system (18) 
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Fig. 5: Output and control signals for the time-varying system (17) 
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Fig. 6: Output and control signals for the nominal system (44) 
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Fig. 7: Output and control signals for the time-varying system (43) 
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6 Conclusion 
The paper has been focused on comparison of three 
different continuous-time strategies during control 
of SISO periodically time-varying systems with 
delay. Application of all analyzed techniques for 
this category of systems consists in the idea of 
robustness. The first method is based on the 
fractional representation in RPS, general solutions of 
Diophantine equations and conditions of divisibility 
while the other two methods use the modified Smith 
predictor structures in combination with standard 
forms for minimum of ISTE or design by CDM, 
respectively. The simulation examples from Matlab 
+ Simulink environment for first and second order 
periodically time-varying systems with delay have 
shown that all methods are able to control given 
plants relatively acceptable. The best results were 
obtained for RPS methodology with 2DOF control 
loop configuration. Furthermore, disadvantages of 
both modifications of Smith predictor are more 
complicated control loop structure and necessity of 
TD model in the inner loop. Hence, one can claim 
that the proposed control design in RPS can be 
considered as an effective method for studied class 
of systems. 
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